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ABSTRACT

Periodic solutions of finite amplitude are found
for two different models of nonlinear longitudinal wave-type
oscillations in a rocket combustor, In the first model, the
characteristic time of the combustion process 1is negligible
compared to the wave travel time in the chamber, or equiv-
alently, the period of oscillation. Here, no phase or time-
lag exlsts between energy addition from combustion and pressure.
This model is believed to apply to premixed gas rockets where
chemical kinetics seem to provide the forcing function. In
the second model, the wave travel time and the characteristic
time of the combustion process are of the same order of
magnitude, so that a phase can exlst between energy addition
and pressure. Specifically, the Crocco time-lag concept 1s
employed to introduce the characteristic time in this model.
This concept has proven successful in predicting the stabliity
behavior of liquid rockets when small perturbations occur and
is extended to the nonlinear case in this work. In both
models the chamber 1is considered to be of sufficient length
to allow the approximations of concentrated combustion at the
injector end of the chamber and short nozzle at the other end.

The theory predicts that unstable operation is
possible for both cases within a certaln range of the parameters
which describe the feedback from the combustion process to the

wave phenomenon. The periodic solutions may be stable or

il



unstable to small disturbances of the amplitude. It is found
that there are solutions in the range of practical interest,
with respect to liquid rockets,which are unstable. This is
shown to mean that "triggering" of an oscillation by a finite
disturbance may occur in the practical range of operation.

The only stable solutions should contain shock waves. An impor-
tant relationship exists between the forcing function of the
oscillatlon and the wave form. This indicates the possibility
that something could be learned about the combustion process
by observing the wave form in the chamber. As the amplitude
goes to zero the results are identical with the results of
small perturbation analyses.

Preliminary data indicate qualitative agreement
between theory and experiment on both a premixed gas rocket
(for the first model) and a liquid rocket (for the second
model) .
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thermal conductivity

turbulent exchange coefficient for heat transfer
energy release rate per unit volume

period of oscillation

"slippage" of characteristics

parameters related to the combustion process

shock velocity




Subscript:

AB, BC, CD 1indicates direction of shock wave
(see Figure 3)
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CHAPTER 1
INTRODUCTION
NATURE OF THE PHYSICAL PROBLEM

High frequency combustion instabllity involves wave-
type oscillations of pressure and velocity within the combustion
chamber and exhaust nozzle of the rocket motor. Energy 1is
supplied to maintain the oscillation by the combustion process.
The occurrence of instabllity in actual rocket motors 1s a
serious problem, since large heat transfer rates to the walls
are assoclated with the high amplitude waves. This often
results in the "burn-out" of the motor, near.the injector or at
nozzle section. This instability phenomenon has been observed
in both liquid and solid propellant rockets as well as in
experimental pre-mixed gas rockets.

The 1instability may occur in the longiltudinal,
transverse, or mixed mode, depending mainly on the geometry of
the chamber., The waveform of the longltudinal mode usually
consists of shock waves followed by exponential decays with
timé*in pressure and velocity. Sinusoldal waveforms have been
observed, however, particularly near the stabllity limits.
Continuous waveforms with steep "peaks'" and shallow '"valleys"
have been observed for the transverse mode in full cylindrical
chambers, Shocks or detonatlons have been observed for this

mode in annular chambers. Flgure 1 shows pressure waveforms

9]

of varilous types,

Crocco, Grey, Harrje, and Reardon have observed upper

* The wavelorm 1s consldered with varlable time and fixed
position.
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and lower-length stability limits as well as off-resonant
oscillation for the longitudinal mode in liquid rockets using
variable-length chambers. They have observed corresponding
effects for the transverse mode, These experiments have

provided evidence of the existence of an important characteristic
time assoclated wilth the forcing functlion of the instability.
They have also produced résults which are 1n good quantitative
agreement with the predictions of the Crocco time-lag theory.
(See Ref. 1, 2, 3, and 4,) Of course, that theory involves a
linearized treatment and applies only at the stability limit.
However, on the basis of 1ts success, 1t 1s reasonable to

expect that the time-lag effect can be equally important away
from the stability limit. In that region away from the limit,
fihite-amplitude waves may exlist. It 1is noteworthy that in the
experimental verification of the time-lag theory, the frequencles
of finite-amplltude waves were measured in motors operatlng very
close to the stabillty limit but not at the limit.

The instability may be developed in two different
manners; by a spontaneous actlon (occurring within the combustion
chamber) or by a "triggerinz" action (from inside or outside of
the chamber). The former type arises from small perturbations
in the flow field. These perturbations are forced to grow by
energy addition from the combustion process. The latter type
is caused by large disturbances to the system, such as, abrupt
changes in the feed system operation, 1In the case of many

experimental motors, artificial pulses are used (generated by




gun powder blasts or high-pressure gas blasts). The onset of
the spontaneous instability may, in principle, be treated by a
linearized analysis, However, the onset of the "triggered"
instability 1s nonlinear in nature and cannot be treated by a
linearized analysis. Both types of instability will involve
nonllnear effects. These effects are present with any finite-
amplitude wave so that they are important whenever a small
perturbation grows in amplitude., In the longltudinal mode, the
nonlinear effects can be important even for small amplitudes,
since wave distortion and shock formation may occur. Both
types of instability, although developed differently, result
in similar cyclic oscillations when fully established,

References 5 and 6 discuss experiments involving
pulsing techniques for both the longitudinal and transverse
modes in liquid rockets. References 7 and 8 discuss pulsing
techniques for the longitudinal mode in solld rockets. It has
been clearly demonstrated that high frequency instability may
be triggered under certain operating conditions when sufficiently
enéergetic pulses are applied. Figure 2 (which is borrowed from
Ref. 5) shows an example of this"triggered' instability 1in a
graphic manner, The results are for a 11quid rocket designed
to allow only transverse oscillation, A variable-grain gun
powder charge produces the pulse,

The important physical aspects of the problem are
that combustion instability occurs with different waveforms for

different modes and that off-resonant oscillation and ”triggering”
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action are possible.

APPROACH TO THE THEORETICAL PROBLEM

A common approach to the noanliiear instability problem
lnvolves the numerical integratioa of the equations of motion
(rewritten in some convenieat form) based on certain iaitial
conditions. These initial conditloans must be that some wave
or disturbance exists 1a the combustion chamber at the 1aitial
time. The disturbance may have any one of an infinite number
of functlional forms. The numerical integration of the equations
determines whether this disturbance decays in amplitude (described
as "stable") or grows 1ia amplitude ('uastable'"). However, only
Che stability of the particular disturbance taken initially will
be determined. The stability of the motor can be determined
only 1f all possible initial disturbances are examined .and if
‘the stability of each is determined. Therefore, this approach
has very grave shortcomings.

The present work uses a different approach. Since
combustion instability is observed to be a cyclic phenomenon when
fully established, a theory may be develooed wh.ch uses the
cyclic condition rather than 1nitial conditions. The periodic
solution which results from this approach may be either stable
or unstable; 1.e., any small perturbations to the amplitude
assoclated with the perlodic solution may either grow (unstable)
or decay (stable). If the solutioa is stable, the amplitude of

the fully established oscillation has been found. On the other
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hand, 1f the solution is unstable, the amplitude of the disturbance
sufficient to "trigger" the cyclic oscillation has been found.

This type of approach has often been used in the analysis of
nonlinear oscillations but has never before been applied to

the combustion instability problem.

Any nonlinear theory developed for liquid rockets
should include a time-lag*effect. Until the driving mechanism
of the instabilility is understood, the time-lag concept cannot
be formulated analytically in a proper manner. The heuristilc
formulation presented by Crocco (Ref. 1) appears to be a
reasonable choice at this time., A theory applicable to other
types of rockets, such as a premixed gas rocket, where phasing
effects are not important, should not contaln a time-lag effect.
It should be noted that a theory without time-lag effects may
be considered as a limiting case for liquid rockets,

Before attacking the nonlinear combustion instability
problem, it is useful to examine three topics; 1) nonlinear
mechanical analogies, 2) phenomena closely related to the
combustion instability phenomenon, and 3) the various gas-
dynamical processes 1involved in rocket instability. Appendix
A contains the analysils of a nonlinear ordinary differential
equatlion with time-lag effects. This shows that off-resonant
oscillations are possible due to the time-~lag effect. The
resonant solution is obtained in the limiting case of no time-lag,

It 1s seen that the 1initlal conditions may be replaced by thc

¥The {eedback ol energy Irom the combustion process to the
chamber oscillation aft any instant depends upon the thermo-

dynamic conditions at the combustion zone over a finite period
of time.




cyclic condition. The handling of the perturbation techniqué
(including eigenvalue perturbations) for nonlinear equations is
demonstrated.

The most interesting works on phenomena closely
related to nonlinear combustion instability were performed by
Maslen and Moore (Ref. 9 and 10) and Chu (Ref. 11 and 12).
Maslen and Moore analyzed the case of irrotational transverse
waves 1n a cylindrical chamber filled with gZas at zero mean
flowl They found a periodic solution with a nonlinear waveform
which consisted of higzh, sharp "peaks" and shallow, long "valleys".
These waveforms are similar to those found in actual rocket
combustion chambers. Their chamber is different from an actual
combustion chamber in that the effects of mass and enersy
addition are neglected, and that there is no nozzle. All thece
effects are of the order of the mean flow or of some mean
steady-state Mach number in the chamber. When applied to an
actual chamber, the error in these should be of the order of
the Mach number. This is often small and explains the similarity
in the waveforms, A standard perturbation procedure was used
including an eigenvalue (frequency) perturbation. Since the
frequency perturbation was of second order, a third order
analysis was necessary,

Chu (Ref. 11 and 12) analyzed the case of resonant,
longitudinal oscillations in a one-dimensional chamber filled
wilth gas at zero mean flow. Energy, but no mass, was added

at one end of the chamber while a solid wall stood at the other




end, The cyclic condition replaced the initial conditions, As
1s usual for resonant oscillations, a second order analysis
yielded a first order approximation to the solution. "Sawtooth"
waveforms 1n the chamber were predicted. That 1s, shock waves
followed by linear pressure decay (with time) were shown to
exlist.

Finally, some gasdynamical processes are considered
which can be important in combustion chamber wave phenomena:
amplitude increase, amplitude decrease, wave steepening, wave
broadening, and wave reflection. Note that these need not be
distinct processes,

The amplitude increases whenever energy 1s added with
the proper phasing. The phasing depends on the characteristic
time of that portion of the combustion process which 1nvolves
the feedback of energy to the oscillation. That 1is, 1t depends
on the duration of the pressure-sensitive portion of the coﬁ-
bustion process, When this characteristic time and the period
of osclllation are of the same order of magnitude, a coupling
between the combustion process and the wave phenomenon may
occur, If the coupling 1s sufficiently strong, unstable
operation of the motor results. Instability may also result if
the characteristic time of the combustlon process is negligibly
small compared to the period of oscillation. The energy addition
and, therefore, the resulting amplitude increase are of the
order of magnitude of the mean flow.

Friction, heat transfer, and shock waves are
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dissipative processes which result in amplitude decrease,
Friction and heat transfer occur mainly near the chamber walls
and have negzligible effects elsewhere, Since shock wave
dissipation 1s of third order in amplitude, it is important only
for large amplitudes. The mean flow through the rocket motor
convects some of the energy of oscillation through the nozzle,
resulting 1n a decrease 1n émplitude. The amplitude decrease
due to reflectlion at the nozzle end 1s, therefore, of the order
of the mean flow,

Any compresslon wave moving through a uniform medium
in one directlon inherently tends to steepen. In the same
situatlon, an expansion wave tends to broaden. Wave steepening
would result in shock wave formation after some time. This
wduld be followed by dissipation of the wave with eventual
dlsappearance of the wave unless some other influence were
present, 'For oscillations in the transverse mode in cylindical
chambers, periodic solutions without shocks are possible. Here,
shock formation 1is prevented by the "turning'" effect at the
outer wall, NMaslen and Moore have shown that cyclic solutions
are allowed even 1n the absence of a driving mechanism (such
as combustion)., This is generally not true with the lonzitudinal
mode where cyclic waveforms usually involve shocks. In that
case, the waves will dilsslpate unless a driving mechanism 1is
provided,

If a wave moves through a gradually decrgasing Cross-

sectional arca, a gradual reflection of the wave occurs over a




period of time. Of course, the wave 1s broadened in reflection.
Therefore, a .ong nozzle in a combustion chamber inhibits shock
formation,

It 1s also possible that wave steepening will not
occur when the chamber i1s oscillating at off-resonant frequencies.
If a "bundle" of characteristics initially representing a
compression wave 1s followed through the space versus time plot,
it 1s seen that the stren,th of the compression wave could
change, 1In fact, the wave could even become an expansion. This
results from the difference between the wave travel time and
the period of flow oscillation, Therefore, in some cases, it
mizht be expected that a longitudinal instability could exist
wlthout shock waves.

Wave reflection occurs in the longitudinal node at
both ends of the chamber., The reflectlion at the nozzle occurs
wlth a loss of amplitude due to mean flow convection and with
a wave broadening due to changing area. In the limit of a zero-
length nozzle, no wave broadening occurs, but amplitude will
decrease discontinuously on reflection. In the limit of con=-
centrated combustion at the other end of the chamber, the
amplitude increases dlscontinuously in reflection there, Of
course, in the transverse mode, the "turning" effect previously

mentioned 1s a reflection process.

THE DRETICAL MODELS

This work deals with instability in the longitudinal
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mode, Two separate models are analyzed. The first involves a

shock wave instability with no time-lag effects present in
combustion., That i1s, the characteristic time of combustion

is negligibiy small compared to the perilod of oscillation. The
second model assumes no shocks but contains time-lag effects.

In particular, the Crocco time-lag postulate is used. In both
cases, only periodic solutlons are sought in some small range

near the neutral stability line. The stability of the solutions must
be determined, 1.e., the solutions may be either stable limit

cycles or unstable limit cycles.

In crder to simplify the gasdynamical processes,
certain assumptions are made. It is assumed that the flow is
one-dimensional and the chamber cross-sectional area is constant.
The chamber is assumed to be very long so that the limiting
cases of zero length nozzle and concentrated combustion at the
chamber end are investigated. Further, ho dissipative processes
are allowed except for the presence of the shock wave in the
first model.

The first analysis, presented in Chapter II, yields
the first order approximation to a periodic solution describing
the waveform of the fundamental longitudinal mode. Here, a
second order analysis yields a first order solution. A third
order analysis cannot be performed since shock wave dissipation
1s of that order. The waveform consists of sho:k discontinuities
followed by exponential decays in pressure and velocity. The second

analysis, presented in Chapter III, yields an approximation,
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correct to third order, to é periodic solution without shock
waves, This solutlon describes the waveform of any longltudinal
mode when time-lag exlists, The analysis 1s carried to third
order so that the elzen value perturbations, which are of second
order, could be determined. For each theoretical model, the
solution expliclitly relates the waveform and the wave amplitude
to the parameters which characterize the combustion process.
These parameters are related to the means of ener:y release

and feedback; allowing, therefore, the possibility of investi-

gating the driving mechanism of the irstability by observing

the waveform in the combustlion chamber.

MATHEMATICAL TECHNICUE

For the analysis of nonlirear wave pheromena in both
or.e-dimensional unsteady flow and two-dimensicnal steady super-
conic flow, 1t is convenient to use the characferisiic coordinate
perturbation technique. This method was first used to obtain
higher order corrections to lirearized theory for a stead; two-
dimenslonal uniform supersonic flow around a thin airfoll. (Fef.
16). Linearized airfoll theory predicts that the solution it
constant along each member of one family of characteristics,
However, the characteristic curves are giver o zero order onlj
and, therefore, are stralght, parallel lines. Actuall.,, they

are not straight, parallel lines whenronliriear terms are considered,
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If 1t 1is assumed that the characteristics are straight, paréllel
lines, the error accumulates as the distance from the airfoil
increases. 1In the case of one-dimensional, unsteady flow,
serious errors will result unless account 1s taken of the
deviation of the characteristics from straight, parallel lines,
In fact, in the combustion instability problem, the error can

be more serious since both families of characteristics have
important interactions causing curvature effects to appear to
first order, while with flow around an airfoll, curvature of

the characteristics is of higher order.

The technique used involves rerturbing the time and
space dimensions as well as the flow properties in some amplitude
parameter, The characteristics of the fleld form the new
cdordinate system, so that x and t are now dependent
variables. The purpose of the perturbation scheme is to obtain
an infinite set of linear equations from a finite set of non-
linear equations. This particular perturbation scheme yields
a greater portion of homogeneous equations than an ordinary
scheme yields. This scheme, therefore, simplified the analysis,
although 1t 1s more abstract than the usual perturbation
scheme,

The technique was developed Yy Lightndll (Ref, 13) and Whnitham
(Ref, 16) and wes extended to the perturbation of both characteristic
coordinates by Lin (Ref, 14) and Fox (Ref, 15), It was first applied to
the problem of oscillations with shocks by Chu (Ref. 11 and 12),

Those oscillations occurred in a one-dimensional chamber with
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zero nean flow, However, when attacking more complex problems
such as the combustion instability problem, simplifications to
the technique, which allow a clearer 1nsight to the physical
nature of the phenomenon, are very desirable., The present
analysils introduces simplifications to the technique which

involve the contlnuation of the soiution across shock waves,
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CHAPTER II

A SHOCK WAVE MODEL OF UNSTABLE ROCKET COMBUSTORS:
ANALYSIS: .

A shock wave model of the fundamental mode of com-
bustion instability 1s investigated. The assumption is made
tha: the characteristic time of the combustion pro:zess 1is
nexligible compared to the wave travel time. Other assumptions
are:

(1) The flow is one-dimensional.

(2) The chamber cross-sectional area is constant,

(3) The chamber 1s very long so that the configuration
may be approximated by the limiting case of zero-length nozzle
and concentrated combustion zone at the chamber end.

(4) A shock wave moves back and forth the length of
the chamber with a constart period, reflecting alternately from
the nozzle end and the combustion end.

- (5) Flow is homentropic outside of the combustion
zone up to and including second order in the wave amplitude.
This allows shock waves to occur but no entropy waves are
allowed.

(6) The chamber gas 1s calorically perfect.

If the lenzgth of the combustion zone is small com-
pared to the chamber length (as assumed above), unstable
operation may be considered forced in a piston-like manner by
the combustion process. The power per unit area (pressure
times zas velocity) at the end of the combustion zone 1is a

rate of energy 1nput to the osclllation of tle chamber gases,
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nature of the phenomenon, are very desirable. The present
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involve the contlnuation of the soiution across shock waves.




°

CHAPTER II '

A SHOCK WAVE MODEL OF UNSTABLE ROCKET COMBUSTORS:
ANALYSIS: )

A shock wave model of the fundamental mode of com-
bustion instability is investigated. The assumption is made
that the characteristic time of the combustion process 1is
nezxligible compared to the wave travel time. Other assumptions
are:

(1) The flow is one-dimensional.

(2) The chamber cross-sectional area is constant.

(3) The chamber is very long so that the configuration
may be approximated by the limiting case of zero-lenzth nozzle
and concentrated combustion zone at the chamber end.

(4) A shock wave moves back and forth the length of
the chamber with a constart period, reflecting alternately from
the nozzle end and the combustion end.

* (5) Flow 1is homentropic outside of the combustion
zone up to and including second order in the wave amplitude.
This allows shock waves to occur but no entropy waves are
allowed.

(6) The chamber gas is calorically perfect.

If the lenzth of the combustion zone is small com-
pared to the chamber length (as assumed above), unstable
operation may be considered forced in a piston-like manner by
the combustion process. The power per unit area (pressure
times cas veloclty) at the end of the combustion zone 1s a

rate of energy input to the oscillation of tle chamber gases.
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Thls power term 1s related to the rate of energy release within
the combustion zone and, therefore, is, in general, a function

of thermodynamic conditions within the zone, 1If appropriate
space-wise mean values are uced for the thermodynamic properties
(only within the combustion zone) and, further, if all thermo-
dynamic properties are related to the speed of sound, a relation®*

applicable at the end of the combustion zone is obtained:

R terms
- - o“
U-u, . (4 “0)4. S‘(f'_.g'.ﬂ.) -+ of (_a_ﬂ.)
w, e, L) order e, (1)

The constants @ and Smay be calculated based on a knowledze

3

of the combustion process. 1In Appendix B they are determined
for a one-dimensional combustion zone where perturbations due
to chemlcal effects are important but perturbations due to
diffusion effects are negligible., The above relation is the
boundary condition at one chamber end when the limitinz case
of concentrated combustion 1s considered.

All thermodynamic variables are nondimensionalized
with respect to their steady-state values., The gas velocity is
nondimensionalized with respect to the steady-state speed of
cound, space dimension with respect to chamber length and time
dimension with respect to chamber length divided by speed of
sound.

The well-known compatibility relations may be
obtalned from the equations of unsteady, one-dimensional motion
for a fluid, Under our assumptions these relations (to second

order) are
¥zero subscripts denote steady-state values.
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KT Ja."‘J‘Ll.:O along T-:J— = UL +

;i, da. - dae = 0 along  dy - w-a
dt

Note that integration of _é__é_ gives the two familles of
4
characteristic lines. Now let each member of the family with negative

slope (j—f: u.—a-) be characterized by a certain value of the

parameter ® and each member of the family with positive slope.
4 _

(5{ =u-“"a) be characterized by a certain value of the param-

eter '5 . Let & and ‘6 become the new independent variables

and 1t 1is said

u=u(%,pg)
a=a (a,B)
x=x (%¢,8)
t=t (a,B)

The compatibility relations are now partial dif-
ferential eguations in &, p coordinates
T-T JeL 2
2 Jda _ O
-1 g I
J% _ (u+a) Jt
J JoL

ol
%: (w -a)%_ (2)

It is necessary to have a numbering system for the oL, p

"
0

coordinates, A convenlent numbering system is shown in Fizure

3. Primes are used for Rezion II and double primes are used
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for Region III. The point t = 0 1is chosen as the time of the
shock reflection at the combustion end. Number 6L by the value
of x at its intersection with the shoek wave AB. Number /3
by the value of & at their intersection at the x = O position
(injector). Let /3' = /9 at their 1ntersection at the shock
BC, Let ©¢'=14+ @' at their intersection at the x = 1
position (nozzle). Number o©L" by the value of x at its
intersection with the shock CD and let (3" = ®" at their
intersection at x = O. The cyclic condition will be implied
by stating conditions along the shock CD are identical to
conditions along the shock AB. Therefore, the characteristics
in the other regions need not be numbered since the solutions
will be cyclic,

| The dependent variables are perturbed in a regular
series 1n Ei which is some amplitude parameter as yet not

specifically defined

u = u, + eul (Ol.ﬂ) + €2 u, (,) + -===
az1 + € @pB)+ EPa, @,B) + -
p=1 + Ep (0,8)+ E p, @A)+ ----
X =X (¢, 8) + £x1 (,@) + €° X, (%, @) + ----

2
to (“ap) + etl ulp) + E t2 uop) + o=
These serles are substituted in the system of Equations (2)
and the equations are separated acéording to powers 1in E»as
1s the standard procedure, Since the flow fileld 1s uniform to

lowest order, the equations up to second order become:
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u, = constant; a, = constant =1
I, _ o, .Jv, _ ot
e = (nem)52 i3 = (s 7 *
2 Ja, Ju, - . 2 oJa, - J“'l -
V- w tie %1 w g 9p oW
ooi(an) P era) 2o
2. (u-) 24 (u-a,) Ho (5)
Ip 0 Jf ' J
g da; L Jdu; _ . 2_ Qa oy
- 9% T Jw ¢ 9 -1 98 T 94 (6)= °

First, the Equations (4) and (6) for u and a are
solved. Trhe first and second order egquations are similar so
they will be solved in 1ldentical fashion, Letting the sub-

script 1 = 1 or 2, the solutions are:

¥-l ¢
2 a - w = Q (w)
-7 v

so that

° e P; (B)-Q; (w)
w, = 2

(7

o = TR Q &) |

N.te that P/2 and ¢/2 are the Riemann invariants. (Reference 17).
The Py (P) and Qq (o) are still arbitrary and

may be determined by a knowledge of initial conditions and

boundary conditions, The boundary conditions are well-de-

fined, as will later be thown, but there 1s no knowledge of

initiel conditions, Thce soluticn will be obtained by leaving

the initial conditions arbiltrary and applying the cyclic con-
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dition 1in its place. Once Py and Q4 are determined, a
simple calculation yields a; and uy, Also, once these are -
determined, x and t are found from their governing differ-
ential equations and boundary conditions which allows the
transformation to the original coordinatc system.

Since the nozzle is short any oscillatory process-
es within 1t may be considered quasi-steady. Therefore, the
entrance Mach number is constant since it is a function of

area ratio only. The nozzle boundary condition becomes

|
oF

Q. ol o’ = 1 4';3'

n

or Q’ ‘;"'-'I Pi.' ot o' = (1+0°

*-
-1

where Y = —5— w
2 °

Equation (1) in nondimensional form gives the

boundary condition at the combustion zone,

u = U.° + Qu, Ca-1) -l-&u-a (a_-,)z+0(a.-l)3v
(9)
Thls results in the following boundary condition for the
first order terms in the perturbation serles
w, = C&)Lﬁ, aL,

When @21, the admittance at the concentreted combustion
zorie 1s larger than the nozzle admittance. This 1s an un-
stable situation as can be chown by a small perturbation
analysls which 1ndicates an cxponential growth of wave amp-

litude when @ >» 1. This cmall perturbation analysils is

standard and 1s performed 1in Aprendix C. It follows from a.
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comparison with the small perturbation analycis that an os-
cillation cannot be periodic to first order in & if no shock
is present since the energy added to the cscillation by the
interaction with the combustion process 1s greater than the
energy taken from the oscillation by the nozzle outflow, If

a periodic solution is to exist there must be another mechanism
besides the nozzle which removes energy of oscillation., Since
a shock wave seems to be the most realistic choice of such a
dissipative mechanicm, 1ts existence has been postulated. The
dissipation of energy by a shock 1s monotonically increasing
with its amplitude cr strenzth. More specifically, the dis-
sipation or creation of entropy is of third order in shock
strength, It is then expected that the strength of the shock
is monotonically increasing with the difference in the ad-
mittances of the combustion zone and the nozzle, Note, of
course, that € is reprecentative of the zhock strenzth and
(@ -1) 1is representative of the difference in the admittances
at the chamber ends. Since series converixence cannot be
proven fcr any choice of €, there is freedom in the specifi-
cation of the relationship between € ang (@ -1). Therefore,
the most simple functional relationship will be chosen which

says that €is directly proportional to (w-~1) or specifically

6:”‘(&)-1) (10)

The boundary condition (9) at the combustion zone now becomes

W, = W ai.+Ra'. at 7Y :=0

where R’ o

2 2
Ri Y-1 a + I&b cS. CL‘

]




This may be put in the more convenient form

I+ VU L (11)
pl'.= ) -V Qi + |-V R

To first order the boundary conditions at the chamber ends

are identical so that a periodic solution may now be obtalned.

i As 1s well known one famlly of the Riemann invariants
is always continuous ub to second order through a shock wave;

P invariants may be continued thrOugh rearward-moving shocks
while @ invariants may be contlnued through forward-moving
shocks. The two boundary conditions (8) and (11) and this
property of continuation through shocks allows the determination

of Py (P ), By (P'), and Qg @¢’) in terms of Q; (©¢). It is

found that
g(p): _L__ Q (p) + .__.;. R. (p)
F;'(,a') = ‘-(,a) whoe  pzpie, Pgd)
12)
Q. &) = IV plla1) = @ (ot'-1) + LR. (oL'-1)
¢ |+U” ¢ * 1+ ¢

Note that Q1 (®¢) will be determined upon application of the
cyclic condition.

When the cyclic condition is applied to determine 0y,
it 1is necessary to relate ® andf to x and t. Hence, the°

Equations (3) and (5) for x and t must be solved. The zero

order Equations (3) may be put in the convenient form.

D Yo +t°]:039 o—t]O

;V’ "“b e Y3 lr\L
with the general solution
"wg . + t = G° (“) j ]_}&-_ - tO - F.O (F)
-y °
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The boundary conditions state

e
o
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—
89
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o
ct
f

K<
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o

O-Otatp= 0
Upon their application, 1t 1is found that for Region I
. & . - . kp
Gy ()= s R o

- w?
o

(13a)
_ = /-]

Y = - .
Using primes on x, t, F, G, &, and /5 in the above

would give the solution for Region II
‘ , FX M . . 28°
L . S e

l-w “w (13b)
o o
/’ ’ “l ’
:“"' ’ 't - [ — p
1'° P ’ "o I+ U, +l-u..°

Similarly, the first order Equations (5) may be written

as

Yt | 3% P, (8) ¥+ Q,(u)‘
7 ol R B Ty I Y

g Y |, ¥ P 3% Qiix)

JoL 1+ & |~ 4 (|+u.° )2 4 ( |+">°)‘

with the general solution for Region I

_ - Y "P(J-_ﬁ'_'zllu)
2wt e LE L) TR0 B ) 46
ol
L ] ¥+l [ 1 2 3T _L.zfQ(Z)Jz
,':é"'t,'ﬁ(ﬂ)"]_(m;) it '7’!3) 4 o-ﬂs) o )l
(14a)

where £ 1s a dummy variable. For Region II the solution is
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o
37
St B R ) S )/ o) dz
* ' (14Db)
The initial condition would be
P+t 26 M) ot B:0
However, the 1ngt1a1 condition will be left arbitrary and
Will be replaced by a cyclic condition., That 1is, Gl-i' left
arbitrary. The boundary conditions are
t1=0atd-p=o
x1 = 0 atw= @
x1"= 0 atu®= 1 + @’ (15a)

The convenience of groupirg the variables x; and t;
into the two families shown above willl be demonstrated when the
solutions are continued across shock waves. These two families
possess a similar property to the Rlemann 1nvariants; that is,
one of the two families may always be continued across a shock
discontinuity. As 1s shown in Figure 4a, characteristic
lines are constantly intersecting shock waves from both sildes,
Of course, they no longer exist in a real fashion after their
Intersectlon, When using characteristic coordinates, it is
convenient to extend the characteristics beyond their points
of intersection with the shock by considering the transformation
of X, t to &, Pas belng double-valued for some small region
(OEEJ ) near the shock wave, Of course, only one value
of the transformation 1s applicable in reality, but this
Agbstraction saves @qu_labor. Figure 4b shows the slight over-

lapping of the o, g sheet (Rezlon I) and the «',p’cheet (Rezion M)near the
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rearward-moving chock BC. Now, the Riemann imariant P(p )/2 may

be continued across the shock by saylng Py (p) at point O
(see Figure 4c) equals Py’ (/6') at point O' where F=F'by
definition since they meet at the shock wave, It is immediately
shown by a Taylor series expancion about 0 and O' and a

matching process at the shock that

4, _ T 4+’ (€?)
F.—T _t'] ) [TZ"I— t'] O e
° o o o’

As shown schematically in Figure 4b, the path of
thie shock BC is given by the relatlionship:
a=1+E&n (B)+ o (&%)
This applies in Reglon I. The equivalent statement written

for Reglon II =says:

oz I+ e & ()3') + O (ész)
- t is

Obvicusly, the function [,+ u

continuous across the shock wave cince x and t are continuous
across the shock wave., It follows that this function has the
same value at the shock in both Region I and Region II. This
function may be expressed as a Taylor series in each region
and then the two series are set equal at the shock wave. In
Region I, the function 1s erpanded about the line o= 1
(point O) and, in Region II, about the line € = 1 (point 0').

The final result is:

[ o] ok () e s

[ 4] v e[ ::-.-t]z(/) a[,-:;--t s oleY)

°.
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Note that ;é%- F ]is zero everywhere and that as

can be shown from Equation (13), [H-u. t] [ TN
ol

From this, it 1s seen that Equation (15b) immediately follows.
Then Equations (14) and (15b) yield F,(IO)-‘-E'(P')*'!ig(l'll:'g)zf(‘i'(z)h*'o(ﬁb
The advantage of this 1s that it is not negessary
to calculate expllicitly the exact location of our shock before
proceeding with the determinatlion of higher order coefficients
1n Region II. This method has uncoupled that calculation from
the rest, and 1t may be performed later, 1f so desired, pro-
viding a tremendous simplification over previous methods.
Similarly, the other family or groupling of x and ¢t may
be continued across a forward-moving shock waie. Thisl
continuation process 1is not valid for x and t( whe:e
discontinuitles will appear. : °

The conditions (15a) and (15b) lead to the following:

F(p)= - G'(/E)*' 3/;.K {(Hfu. )3_ Hv' <1- )}f q (2dz
P ) - )

] ! R

FUp)=F - (), O Bdzv oled

(16)
e = - 3 -
G () = G(lon) + 2T ol j Q, (2)dz
_ 0 ] 4
Ll (5:) wr @ (w-)+o(e?)
The cyclic conditlon 1s applled only by stating that

flow condltions along the shock AB in Reglon I are identical to

conditlons along the shock CD in Region III. When the cyclic
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condition 1s applied, 1t is necessary to know the difference
in the values of & andet”at any point of thelr intersectlon,
with the shock wave CD.

In Reglon III, the same differential Eguations

(3) and (5) govern x and t with the boundary conditions:

&' = x at ﬂn = 0
x =0 at i f?”
£ =T at xn = Br 2o

where T 1s the period of the oscillation and is still un-
known. These must result in the following for the c¢yclic

condition to hold.

Gn (“..)-_- Gc', (“..)+ "’;

G'.” (OL") = G" (d'l-)+ rr" (17)

where T = Ty + 3 Ty + ===~
Before proceeding the period must be determined in order to
obtain the solution for Region III. It is known that the

period is directly related to shock velocities by the relations

_['J'* jV it ; ‘[J'I‘ :d/’:’r‘v.;:;t (18)

where T = T' + T'' and T' 1s the time of forward-shock travel
and T" 1is the time of rearward-shock travel. It 1s also known
that the shock velocities may be related to the flow properties
on both sides of the shock by means of the conservation equa-
tions. A well-known result is that the instantanecus velocity
for a forward-travelling shock 1s approximately (to first order)
the average of the slopes of the two P-characteristics (one

on each side in an x vs. t plot) intersecting the shock at
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that instant. For rearward-moving shocks, a similar approxi-
mation uses the slopes of Q-characteristics., The slopes

é%%L = u + a may be relateghto ¢ through Egquations (7) and (12).
In a convenlent form these approximations are:

\‘a |+u. + & j‘ Q (o) + ; :.:: [Q‘(u)ﬁﬂ'(o)-]fi-o(ez)

w4 E {_.LL_':L Q (8) - “'[Qmo @]f+o(e?
VBC tht 4 -y A o((lg))
Combination of Equations (18), and (19) and separation

according to powers of €.yield the followlng results:

1= (1+u) "T"

-1 = (u - l) 'T'"

0 = (nw-)’T' -0[ [%— ) ¢)+”" ’-—"—‘f'[Q(-)-ona)] i g
0 =

(w-0 T+ '.[ ):i_'( Q (B)- %"’l&'(opc?(o)]}—‘{—r

‘‘hese four relationships determine T,', T,", T,'s @and T{"

which, upon addition, yield the results for T, and Tq.
- 2
To= —ax

T 55 [ i) ] [ e F e T lfe oo

These relationships for T, and Tp are substitutea into Equation

(17) with the result:
G () = G (¢’ )‘*'——r

6" )= G (o) + [(,:f: L ’-L"EYJJ-Q (p) 44~
(o}

-%{@ﬂ# wi) ] [aeecd]

#*Note that in order to determine the velocity of shock AB, flow
conditions immediately in front of shock AB are set equal to
flow conditions immediately in front of shock CD. This 1s
valid because of the cyclic nature of the phenomenon.
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+1 1c continuous (up to and

"

- W
o
including first order) through the shock CD. It 1s evaluated

Now, the function

in Region II from Equations (13b), (14b), and (16) and in

Region III from Eguations (13a), (1l4a), and (20). Note that

~n .
the function — — g +1" in Reglon IIT is identical to

~A
‘T:TTI::‘+t in Region I plus a constant equal to the period
of oscillation. The result of matching this function across

the shock CD is

I
2(a) g [G )+ 35 [ (% )% 2 ,—__:_‘:)‘]fq(zuz

/-ut

[~
v [(a) 2 () ] [a+ @)=
+£[c (=t'=1) 4 3% r[(riz) ey ,—-{:-)‘ch'a (2)dz
-5 [’ 428 Gei) ] 24 0] + 06

It is readily seen that o= + | 1is of order E.
Therefore, € [G' (“')-G' (“'-U)J and e[Q' (u")-Q' (u'-')]

are both of order £;l. Using this,a simple relationship re-

sults for the differerice in the valuet of e¢” and ® at the
shock CD., The knowledgze of this difference is necessary for
the application of the cycllc condition as will later be shown.
This difference 1s the "slippage' of the characteristics at the

shock CD and 1s found to be the followling:
EAcc g -+l =

r¢:
:-nr I+u Q ()*Q, (o
['*“ " ][ A ) _q wnf+o (€2)
This 'slippage" £,1&°£ is shown schematically in Figure .

The continuatlion of the Riemann invariant across the

shock CD results in:

[EQ )+ &% q; c«i:[eq‘.c«')* £* Q, @z')_Z: o (¢°)
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and noting that o”zot’ —1+ & Ao we get
L4 ‘. 3 ‘a.' ‘ . 2 o “,-, =
[ea' (V-1)4 €8 22 () A 465 Q" (1))

[& @ @)+ € Q )] +o(e
The cyclic condition says that the flow 1n Region I is identical
to that 1in Region III so that

EQ (- 1)E? JQ o (ov'-1) Ao r &2 Q, (x-1)-

£€Q C-c)+£‘ q (*)+0 (E°)
Noting the relation between Q‘f"") and qc"‘) as given by Equa-
tion (12), it is found that our matching condition 1s trivial
to first order and gives a governing ordinary differential

equation for 0' () to second order

dQ, Ao : ,f,,. R, (%)
a<

(21)
The solution to this equation will yield the solution of our
problem., What has been done is very common in nonlinear
near-resonant solutions; that is, a second order investigation
has yielded a first order solution. If rotatlional effects did
not make 1t impossible, a third order Investigation would
yileld thre second order solution and so forth. However, a
firet order solution ylelds a good deal of qualitative in-
formation about the oscillation and also, for not-too-large
amplitudes, the analysis 1s quite accurate in a gquantitative
manner assuming there exist no other €rrors than those re-
lated to the degree of the approximation,

If the folloying definitions are made

pa Lo

I~ I eV (] u.
¥+ (""")[ u-u.’ - * =

‘.‘“ ,")[( -l) _ﬂ/[ ‘l‘:o JeV +l l'-:%ﬂ

C= @) + Q,(0)
r 4

(22)




then Equation (21) becomes
49, _ _ r@ .AQ°
Jd Qa‘ c

This first order nonlinear ordinary differential equation

normally requires one boundary condition for the complete
solution, but thnere is none. Also, the values of the func-
tion at the endpoints of the domain of interest O& o¢ € |
appear as constants in the equatiocn., These constants are not
known apriorl. These two difficulties will be overcome in

the following manner. It can be shown that physically reason-
able solutions exict only for one value of the parameter C.
That only C = O can give an ocgcillatory solutlon is the im-
portant result of a topologlcal investigzation of the ordinary
differertial equaticn (Appendix D). Also, stating C=0 gives

a relation between the values of the solution at two points

o =) znd & =1, This 1s Just as satlsfactory as stating the
definite value of the solution at one point which is the usual

statement ¢f the initial or boundary condition., Hence, the

followilng solution is obtained for Eguation (21).

_Xr 1 2 Aot _
Q.(d‘)" A Lve> © '] (23)

Note the exponential form of the solution indicates an ex-
ponential wave form, Also, as A—oO (8—'- 0) a sawtooth wave
Tform is obtained as shown by the limiting case

Q)er (Z-w) ,

Note that once Q. (‘) 1s determined P,(F) ,Q, (cl ),

’ ’
and P, (P) may be determined from Egquation (12) 50 that suf-
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flcient information is available to calculate the flow
field properties from Eyuations (7, 13) as a function of
position and time, Note that the pressure perturbation may
easlly be related to the speed of sound perturbation by the
isentropic relation. For Region I, the final solutions are
obtained

r —a '“6 ~~ -L -
wes = €% A )t[‘-v o 2079% a('*“é)"]-%j+oce')

t-te. v

P-

-A " - +a
emg (ot CLLV_' L 2 °)"J—,-_',—,— +0(€%)

lv~a~>

and for Re:;ion II, the solutions are

-A "u'oz ~l
Z(-u.:&'&}'e (T)t [H-U' e%(' -)1' A'("“ﬁ)% A‘] X v—} o0E?

o ,+e-A 1=y

1= 9 LR Y- V(T b 2 2

P-B=-gY f({ )t 1+y e,%'(I 2 +e %( e J-,—;L);.}+O(€)
. i+ @=-> -

The shock etrength is calculated from the above relations

to be as follows: A

"A £‘§ “.Z: /If-ee-* + O(€*)
-A
A“-OC=87\’: l-:e.'>‘ +0E")

=A
r 1Y -
A&U =E¥N tv' ive™ + O(E?)
[—e=4
Ap, =EXX Fex+0(eY
Alcso, the shock velocities are

(l'“)t
Mg = I+ 4-6-’3{'3i "EJ—Q

I+e-? +O ()
vac'_u-,_‘-af_ i&{u".u e/\(l’“o )(’ u'o)j OCCZ)

and the period of oscillation ic:

Teree HTp[ e ()G 3 e froeh

1+é&
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The solution indicates a shock discontinuity
followed by an exponential decay as shown in Figure 6, For
small A this decay 1is nearly linear (sagtooth type). There

-

is no difficulty as A—O since : stays finite. The

shock strengths stay constant with time and strenzth is lost
or galned only in reflection. The absclute value of the shock
veloclty always increases in time and the perturbation on the
natural period of oscillation can be shown to be of the order
of &€ (p'zL) which is usually negligible. As € ~90 (or w=—>»l)
the shock strength goes to zero. Thils is an important result
since it shows a consistency between linear and nonlinear re-
sults; that 1s, the same stability limit 1s predicted by both
linear and nonlinear analyses. The main effect on amplitude
is produced through € wnile )\ has only a secondary effect on
amplitude. The importance of A is that it indicates a definite
relationship belween the forcing function of the instability
and the wave form of the oscillation,

NUMERICAL EXAMPLE

A specilal case of the energy release rate r in

Appendix B will be examined. 1In this case
- #*
re e_m€ﬂQT

where E/R 1s a parameter and T* is considered as dimensional.
This rate function admittedly may be too simple to be realistic,
but is primarily intended to show the interesting relationship
between functional Tforms of the combustion laws and the flow

osclllation in a quantitative manner,
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€ and x may be calculated by use of Equations (10), (22),
and (B-9),. The following are obtained

€= [V Frw. 20T

G

..-

-1 5 (-
\ = 2 7T v-) [2(913) 1 7?_:‘"4‘ (n’-:al)w;j
(O’H)CHJ‘)L To e b u, ]

I‘VL f o

Uslng the values X’= 1.2 and uo = .1 the following results:

£ i
RT * i £ >\ r AP shock
10.0 07 .028 3.53 152
12.5 A2 .189 3.53 .259
15.0 17 .439 3.53 .362
17.5 .22 778 3.53 .453
20.0 27 1.207 3.53 .522

The table shows that for this case, the combustor is most

unstable for low temperature operation and most stable in high

temperature operation. The amplitudes are not excesslvely large

and the exponential shape of the wave 1s not too severe despite the

exponential form. of the combustion law. Figure 7 indicates

the pressure wave shape at both ends of the chamber over the

period of oscillation for the values of >\= .6 and 1.2,

Note that the shape is not very different from a sawtooth wave.
Although calculations have been made here only for a

very simple case, there 1s no reascn why they cannot be accom-

plished for more realistic combustion processes.
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CHAPTER III

NONLINEAR COMBUSTION INSTABILITY WITH
TIME-LAG EFFECTS: LONGITUDINAL MODES

FORMULATION OF THE PROBLEM

A model of the longlitudinal modes of 1instabillity
is investigated in which the characteristic time of the com-
bustion process 1s of the same order as the wave travel time
in the combustion chamber, This 1s different from the model
of Chapter II where the time of combustion was negligible
compared to the wave travel time. When the combustion time
and the wave travel time are of the same order, the phasing be-
tween pressure (or gas velocity) oscillation and the energy
(or mass) additlion oscillation 1s affected.  One important
result of this phasing effect 1s that the frequency of the
oscillation may be different from a natural resonant frequency
of the chamber (See Ref. 1). (In the model of Chapter I1I,
the resonant frequency was found). On account of this result,
there are important qualitative differences between thils case
and the case where the combustion process 1s instantaneous
(Chapter II). Here, as will later be shown, the possibility
of broadening the range of unstable operating conditions by
nonlinear effects exists., This is related to the "trizgering"
action explalined in Chapter I. Another possibility 1s that
stable periodic solutions with finite amplitudes and without
shock waves are possible. Thils was not possible in the
model of Chapter II where the additional dissipative mechanism

was necessary to maintain periodicity. The approach of the
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analysis of Chapter III wilkbe to find a periodic solutions
of finite amplitude without shock waves and, then, determine
the stability of this perliodic solution. Instabllity of the
periodic solution will indicate the possibllity of "triggering"
action.

Many of the assumptions made are identical to some
of those of Chapter II and produce similar simplications in
the analysis. The assumptions are:

(1) The flow is one-dimensional.

(2) The chamber cross-sectional area 1is constant.

(3) The chamber is very long so that the configura-
tion 1s well-approximated by the limiting cases of zero-length
convergent portion of nozzle and of concentrated combustion
zone at the injectof end of the chamber,

(#) Flow is homentropic; i.e., there are no shock
waves and no entropy waves in the chamber,

(5) The zas in the chamber 1is calorically perfect.

(6) The Crocco time-lag postulate is made. Through
this postulate, the characteristic time of the combustion process
is introduced to the analysis,

The time-lag postulate is presented in Ref. 1 (where
a linearized theory 1is developed) and is extended to include
ronlirear terms in Appendix E. Accordinz to Crocco, the con-
cept 1s that the rate f of the combustion process (as experienced by

any pérticle) 1s senslitive to the fluctuations of thermodynamic
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properties over a period* of time ?’prior to the instant t at
which the particle becomes burned chamber gas. It 1s assumed
that the time integral of the rate function over the period'zb
is constant. 1In other words, some entity 1s accumulated at the
rate f until at time t , the critical amount E necessary for
complete combustion has been accumulated, T is the period of

accunulation such that

E = twchZ'
vt-T

The nature of the entity 1s never specified and the relation-
ship between f and the thermodynamic properties 1is not known
exactly. 8o, clearly, this is a heuristic approach.

The fluctuation 1in f produces a fluctuatlon in ZJ
which allows the value of the 1ntegral to be constant. 1In
particular, the more rapid the combustion process (f increases),
the shorter the time of the combustion process ('?'decreases)
and vice versa. Of course, the fluctuation in f 1s related to
the fluctuations in pressure and temperature. The fluctuation
of ?f , therefore, 1s related to the fluctuations of the
thermodynamic propertles at the combustion zone.

The fluctuation of the mass flux emitted from the
combustion zone at any instant t 1is related to the period EL as-

soclated with the partlcle completing combustion and being

. emitted from the combustion zone at time 4 . The specific re-

* Note that € 1s actuall, a time period or duration of the
pressure (and temperature) sensitive portion of the combustion
procesc, It ~111 appear ir the equatlons later as a time-lag
only due to the perturbation scheme.
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lationship as developed in Ref. 1 and Appendix E is

my dt

where mp 1s the mass flux of burned gases emitted from the
combustion zone and thy is the mass flux injected into the cham-
ber (assumed constant).

The fluctuation in mass flux fpy M2y now be related
to the fluctuation of pressure and temperature., This relatiorr
ship describes the feedback of energy to the oscillation. De-
tails of the formulation are prescnted in Appendix E. The re-
sult expressed by Equatlion (E-17) will be used as the boundary
condition at the injector end of the chamber. This boundary
condition is reeded to solve the zoverning equations of the
instability phencmenon in the combustion chamber.

Naturally this heuristic approach leaves much to
be desired. It can only be Jjustified on the following basec:

1) At this time, the nature of the combustionr
process 1is not completely understood even for steady-state
operaticn, Ir particular, the mernner in which enerzy 1s fed-
back 1rto the oscillatiorn of the chamber gases by the conbus-
tion procecs is rnot kroun for certain.

2} The lirearizcd treorizs of Croaocc, Crcr , and
Reardor: booed on thic cane approsch hove been ulte successfual
in predicting the magnitudes of the off-resonant freg.crcies
and the locaticn of the stabllity limits., Agzreement between

theory and experiment i1s very ood despite the deliberate
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naivete of the conception of the time-lag postulate.

The same nondimerisionalization scheme as used 1n
Chapter II is used here. (See Chapter I, page 13).

The ejuations of motion which describe the wave
phenomenon may be transformed to characteristic coordinates
and perturbed in a power series 1n some amplitude parameter

c as done in Chapter II. Again, the one-dimensional, un-
steady equations of motion for a perfect gas 1in a homentropic
flow field through a constant-area chamber yield the compati-

bility relations as follows:

%%_,. da. + o’u.=.O along ydéf_ =w+a

2 da -du =0

dt = w -
-] along 7{. w - a&

(1)

Here, these equations apply to all orders in amplitude.

Each member of the famlly of characteristics wiﬁh
nezative slope (in a t vs. x plot) has a particular value of
the parameter o¢ while each member of the family with positive
slope has a particular value of the parameter /5. X and /Af
now become the independent variables and x and t become dependent

variables such that

u=u (s
asa(¥?”
x »wx (o @
t =t (o 2




"‘Now, Equations (1) may be rewritten as partial differential

" equations

V-1 It I
R da - Jdu -
-/ B o

x ;
3’2;_ »_—_(‘4.4-0;)3%
SV - [y
2F = (u a.)‘.gi

Writing the pérturbation series, We have
=u+c ulx, B ref u (2 )+ y (x,8) 4 0CEY
a=l+€ ala)rct a (wp)+€ a 8 +0 (")
p=l+C p B+ ¢€f Pe (~,ﬂ)+€’/g (¢, 8)+ 0 (€%)
x=th (&, 8)+€ L (@)% (u8)r€” % (g)r0CY)
t =8 (¢, 8)r€ £, (n, 0)+ 2 b ()€’ L G )+ o)
These series afe substituted in the system of_partial differen-
tial equations and the resulting system is separated’according

to powers in €, The final set of equations is

%, = constant;l a, = constant = 1
Jr, _ ) — ) D 3
72 = (Uéf-l)a% ; 37;4, =(u ,)3/2_‘,, | (3)
R da Miop; R dac du: = (4)
> A T o= 0w o8 Jg

where 1 = 1, 2, 3, etc,

Id¥, N 2, o )n
ow = o+ ) S5 H(w +a) e

L. =f%-'):§§—' +(°s-a-,)§§»

I8 (5)
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Il
oL

a.. = (a"“):?:j + (& +07)I.T + (“t +a-2) Jo)

2s (1) 9t -a) 2L 4 - )2
2 = (4 ,)"5,71 + (4 “‘)7 + 4 0;,)3/6 (6)

It is immediately shown that s, uy, Xo and & are governed

by homogeneous llnear wave equations. If Equations (3) and
(4) are differentlated and properly combined, the final forms

obtained are

2

<3ﬂ2¢; = 0 3 d UL _—_ o
;%xZ?? ;hx:}S

2 2
J *s = O 2 Lo = O
3298 553

Similarly, it can be shown from Equations (5) and (6) that x4,

ty, xo, tp, etc., are governed by inhomogereous linear wave
equations., If the analysis had been conducted in a space VS,
time coordinate system, the coefficlents aj and uyq would have
been governed by inhomogeneous wave equations whenever 1 2 2.
This attainment of homogeneity is a most important simplifica~-
tion resulting from the transformation to characteristic co-
ordinates.

The solution of the wave eguations which are eguiva-
lent to Equations (3), (#), (5) and (6) requires the statement
of initial conditions and boundary conditions. Concefning the
solutlon for ay and uy., a boundary condition will be gilven at
the nozzle entrance and another boundary condition at the com-

bustion zone. Initial conditions will be considered in an
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arbitrary functional form. Eventually, the initial condition
will be replaced by the ¢yclic condition. The conditions on
the solutions for Xo» tor X1, tl, etc. will come from the
numbering system to be chosen for the characteristic coordinates.

The numbering system should be chosen in the most
convenient manner. Silnce we are searching for solutions where
in the flow properties are single-valued, contlnuous functions
(no shocks) of space and time, it 1s desirable to have a co-
ordinate transformation which is single-valued and continuous.
This will be different from the case of Chapter II where shocks
were present (there the transformation was multi-valued). If
care 1is not taken, multi-valueness of the transformation could
be introduced by poor cholce of the numbering system. This
point will be demonstrated later.

. As shown in Figure 8, the values of an « -charscter-
istic and @ -characteristic which intersect at x = O (com-
bustion zone) are set equal. The value of an ef-characteris-
tic i1s taken to be greater than the value of a @g-characteris-
tic by one unilt in thelr intersection at x = 1 (nozzle entrance).
Also, at the initial time (t«0) the values of o and /? of the
characteristics intersecting at the point x = 0 are both taken
to be zero. These result in the following conditions which will
be applied to the solutions for x and €.

X =0 at <=4
1 at ] =-1‘+/’

) at =g =0 (7)

X
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Note that here no distinction has been made between regions

in the space vs., time plot and only one a(,fa sheet is con-
sidered. Of course, this differs from the analysis of Chaﬁter
IT where different regions and different o, 8 sheets appear.
One more condition on the solutions for x and t
is required. This is an initial condifion and can essentially
be reduced to a statement which gives the value of gn o -charac-
terictic at 1ts intersection with the ,ﬁEC) characteristic
(See Figure 8). A criterion for the single-valuedness of the
transformation 1s that e ©be a monotonic function of the x
position of the intersection with the ,/7- O characteristic.
In view of this criterion, a numbering system is chosen which
states that to zero order, the number e 1is given by the value

of x at the intersection with /3= O characteristic. That is,
ol = 1 ot =
p=0 (8)

The hizher order statement will be made later in an implicit
form which allows a smooth and continuous transformation of
the coordinates. ("Smooth" means analytic everywhere).

SOLUTION OF THE EcUATIONS

Equations (3), (4), (5), and (6) can now be solved.
The solutions of Eguations ('), (5), and (6) will be ir terms
of the arbitrary initial conditions as explained in the pre-

vious section. First, Equatiors (3) are rewritten in the form

These possess the general solutions

- = F' . ”"o =
/-%‘“La t, (/f> ; “ +7-L°— Ci-(“-) (9)
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Substitution for x and t from Equations (2) into Equations
(7) and separation according to powers in € yields conditions
on the solutions of E~uations (3), (5), and (6). The zero or-
der results combined with Equation (8) provide the conditions
necessary for the complete solution of Equation (3). These
conditions are:

Xo =0 at =4

Xo = 1 at «x=/+4

0 at °‘==/5=C)

Yo =8 at 4L=0

e
1}

The above conditions are sufficient to determine G, (e ) and
Fo (/3) from Equations (9). The results are
— ) : =_ 2
L= EL R =25
o o
Now, substituting for G, and Fy in Eguations (9), we find

%, = X - &
0 = -4 ) éb - + <
o

/+¢%

(1)

It is readily seen that Equations () have the general

colutions
2 = Pls) ; % - =
r-/ az*“r:"z/d)JaT,"cf‘. ‘f*q(u)

Rewriting, we find

¥ = R -G ¢
Y= FRArqW], gt ae

) . .
Note, of course, that 3 P = & Z ¢p and Lc =1 zé"Q
. i=o t {=0 ¢
are Riemann invariants,
Trie coerficients Py and ¢4 could be determined from

the boundary conditions and initiel conaitions on Eguations ().

The boundary conditions are given Ly two relatlonships between
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the speed of sound perturbations and the gas velocity perturba-
tions. One relationshlp 1s given at the combustion zone while

the other is given at the nozzle entrance. 1Initial conditions

would give the values of the function QiG¥)=;§T'%-4Q along

A= 0 in the range o<« <l "and ay along osg in the

range -4 £« <0 (or an equivalent statement). As developed
]

in Appendix E, b, 1s the steady-state "time-lag" in character-
istic coordinates. If there were no time-lag effects, the
initial conditions would only be given along /3= O in the range
O o« < | . This point will become clearer after

the boundary condition at the combustion zone is applied. The
solution will be found in terms of the arbitrary function Oi(°< )
where —éo s 1 . The functions Pi(/@) and rq1(e¢ )
where «>1 and ﬁ 20 will be determined by means of the two
boﬁndary conditions. Later, the ¢ (e ) for all e will be de
termined specifically so as to obtain periodic solutions.

The boundary condition for the short nozzle states
that a wave 1s reflected at the nozzle with a loss in amplitude
due to convection through the nozzle but with no phasing or
dispersion, Whenever the length of the convergent portion of
the nozzle is negligible compared to the wavelenzth, oscillatory
processes may be considered as yuasi-steady. This means that
the Mach number at the nozzle entrance staye constant (since in
the steady-state 1t depends on entrance to throat area ratio
only). In other words, the gas velocity perturbation 1s direct-
1y proportional to the speed of sound perturbation. Use or
Egquations (2) for u and a leads to the boundary condition

Ui e Vo a1 at ez jp 4




°

where 1 =0, 1 2, etc. This condition may be written in a
more convenlent form by substitution from Equation (11).

1=
QL('Q‘) = fZ(/’)at ‘“‘7’ 8o the functions are related as shown' by

the following equation which 1is valid for allld’.
(-7

Qerp) = 1oF B A

(12)
- ko WY
| Note the definition has beea made v-a 27 &, .
Since the coefficient =X is always less than unity and

! 1V
real, a loss in amplitude with no phase change in reflection at

the nozzle 1s indicated.

The boundary condition at the other end of the chamber
has been discussed in the previous section and is developed in
Appendix E. If this boundary condition at the combustion zone
as expressed by Equation (E-17) 1s combined with Eguation (11),

the result is written as follows:

. o

£ ' |[irg (-0 ] R (o) -[-4 (- ¥7) ]G p)
$ I [Bag)+ o (rd)]f=2y Z € ‘R
| (13)

where thre R{ are defined in Appendix E. After séparation ac-

cording to powers in € , the Ry terms will appear as inhomo-

| gereous terms; i.e., they will not contain Py and 0y but will
contaln aj_3, ug-1,81-2, Ui p, and so forth. These inhomogeneous
terms depend upon lower order a; and uy and therefore, accord-
ing to Equation (11), they depend upon lower order B and 0.

Note, also, that the Ry  contain Z and ZL so that the com-
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bustion zone boundary condition is related to the solutions
of Ejuations (5) and (6). This dependence upon Z:‘ is to higher
order, so Equations (5) and (6) are not really coupled to
Equation (13) after separation and the solutions can be found
in an orderly manner,

Equation (13) describes the changes in amplitudé and
phase due to wave reflection at the combustion zone., At the com-
bustion zone,energy is added to the oscillation by the com=-
bustion process. Since there 1s a finite time period associ-
ated with the combustion process (represented by the lay Lo
in Equation (13) ), a phasins appears in this enerz; addiiiorn
procesgs. On account of this phasing effect, therec can elthrer
be an irncrease or a decrease in amplitudc due ©to reflection at

the combuction zone.

2
If the furction f‘i(o()= ¥ & -4 were zlven irn
iy - . 2 o i - . - [ Bl
the range O0€ ot €| and 1f the function di(/ﬁljd)- x [fz([)?cf(/)]
were given in the range -bo g 4 O, Equation (13) could te

used tc colve for Pi(/d) in the range O-‘E/O'-i I . “hen

Eyuation (12) could be uced to solve for ¢3( e ) in the range

1
IS L& & .  Returning to Tyuation (13), Iy (/d) would
be determined for /ﬁs/d's; £ . It follows that Py and gy

could be determired for all hisher values of &« and R by alternate
use of Ejuations (12) and (13).(Note that Ry' is always con-
sidered as known since after separation, it is an inhomozenecus
term which éould be delermined from lower order solutions).

This above approach is not the ore taken here. Instead, we

shall seek Pi(/?)vand ri(e¢ ) which satisfy  Ejuations (12)
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and (13) and are continuous and smooth (analytic everywhere)
functions of =L and/d . Periodic functions are the special
type of these smooth functions in which we are most interested
since these solutlons represent ejyuilibrium conditions.

Using Equation (12) to substitute for Pisg?) in

Equation (13), we have

{H-v-[ w (j- ‘rn)JQ (1+8)- [ w (I- Yn)]@ (6)

+ ¥n uOEl:*;}_E OL (1+2-4 >+Qz (,é’-é,)j=z".‘; ? (1)

The above algebraic difference - eguation is consildered ac ap-
plicable for all A& (-eo < < =0 Y. A csmooth function
ié sought as a solution of fthis e-uation for each coefiicient
¢y. Orce 4i1( @) is determired, then eithLer Lyuation (12) or

(13) may be used to solve for Pi(/f). Knowledse of both

and P; yields ay and uy throush Eguation (11). Before Ejua-
tion (1%) can be solved for Qi(/!), Ri must be determined for
L 2 R . These depend upon ti, as shown in Appendix E. S&c,
prior to a solution of Ejuation (1) for Wy where L= 2 or 3,
Eguations (5) and (6) must be solved for t; and to.

Using the solution for ty as given by Ejuation (1),

Ejuations (5) ma, Le rewritter.

o A _t )= Y% +a,
Joe [Ita / ’—*T(H_%)

.Q——: . YRS {‘ = K -a,
A S S (1-4)?
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Substitution by means of Ejuation (ll) has the following result

| _ + P(g) _ 3-¥r Q=
9« '+“ t] = (’1&%’ 4 (;f-%)’

X, - 3-¥ Bg) _ T+l Q)
J/ﬁ /_u ’f"fl] 4 (Ii%)z 4 0‘_‘.“)1

These equations can be integrated to obtailn

oL
_ - 3T N
E P 2T (o f [Qes
o
_ : 2 A
-t f =G+ ;Tr(f’é“)f P(2)dz - X (,L_) AR

(15)

where Fl(/5) and Gy(e¢) are the homozereous solutions. The
bourdar; conditions on Xq and tq will be used to determine thecse
func’ions. Substitution of Egquation (2) into Thuatlon (7) and
separa‘ion of the lirst order term: _ielae the followlnyg Loundary
conditicenc

X1 O at “=ﬁ

¥ =0 at exltS

| t1 = 0 at °¢=,3=O (15)

Application of the first condition on Equations

(15) has the result
Y
)= 6 v 5 [y [7 RO [(99%]
+ R °
-BL6S) R - (A F ap]p (17)
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The second condition yields the result

X A
S T FE G [ TQ@id- ()[R @]

+ ZELT () QUA) - () R s

+ Jltl_ </+°g)? F')(/) (18)

| Combination of the first and third condition yields the follow-

1 ing
0) =G (0)=0
F (0) = G, (o) (10)
If initial conditions were given such that the func-
tion G](e ) were known in the range O€ot< | , Equation (17)

could be used to calculate Fl(/ﬁ) in the range O\</5$ |. Then,

Equation (18) could be used to determire Gy(=< ) in the range
< << £ . Obviously, by

o

successive alternate use of Euyua-
tions (17) and (18), Fl(}f ) and Gi(e<¢) could be determined for
all &« > | and all A>0. P and 0] would be calculated
separately from Equation (12) and Ejuation (14) (after sep-

~aration) and are considered as known 1n the above-mentioned

calculations. Once F; and Gj are known, Eyuations (15) yield

X1 and tj.

The specification of Gj(e< ) for Os«< ] essentially
means the specification of the function ,f&b + t, along
/7==C) . It tells us to first order, wher combined with Ejua-

tions (2), (8), (15), and (17), where a characteristic with a
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given value of o& intersects the/¢?=<j characteristic. This
information is related in a pertinent manner to the numbering
sSystem for the characteristics since the inverse statement
would give the value of of for the characteristic that in-
tersects the/o=o characteristic at a given x position. There
fore, the specification of Gy(<¢ ) in the range osa<) is ac-
tually a specification of the numbering system.

The specification of Gy(= ) must not violate the
conditions (16). When these conditions are combined with E{u&-

tions (15), it is seen that necessary conditions are

G1(0) = 0; G1(1) = t1(1,0)
A straightforward specification will 1in general, violate
trese conditlons. For example, Gl(ac) = 0 for o< «s| violates
the second necessary condition. This can be shown to irvol.e
a double-valuedness of the transformation. The choice of rum-
bering system such that o= % along #£=0 does not violate
these conditions. (This would mean when combined with E~uation
(8) that x] = O along /=0 and, therefore, by means of Ejuation
(15), we see that Gy(ec) = (e, 0) ).

The approach taken here will not involve the definite
specification of the initial conditions; i.e., Gl(°‘ ) will be
left arbitrary in the range OSo™ <[ | 1Instead, functions
F, and Gy will be sought which are ver- smooth for all e and
/5 . This would introduce much simplification to the coordi-
nate transformation. The same functional transformation would
apply for all o¢ and/5 . If Gl(ué) were specified apriori in

the range O%f &< /| (e.g., o = x along =0 ), then the
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functional form of the transformation would differ for dif-
ferent ranges of the values of o and ff . In addition, and
more 1mportantly, 1t would be extremely difficult to determine
whether a solution 1s periodic due to secular terms appearing
in the transformation.

Subtraction of Equations (17) and (18) leads to

the result

I*ld'
- 5 () [codes

+ TE {(._ )’ [@ 1+p)- Q)] g~ Gy )P//’{f

R

If consideration is taken of Equations (12) of Chapter II, the
above result agrees with Ejuation (16) of that chapter. The
ag'reeme‘nt exists because xl(og,d) and tq(« g), if properly com-
bined, are continuous through shock waves to first order,

Once Py and 7, are determined, the above algebraic-
difference equation could be solved for Gy. Knowing this funo-
tion, Equation (17) would yield F;. If the functions Gy, P;
and ©1 were smooth, it 1is seen that the coordinate transfor-
mation functions x(«,4) and t(%,8 ) would be smooth to first
order from Equations (10), (15) and (17). This allows the
same transformation function to be applied for all values of
o and/d . In retrospect, it is ceen that, in effect, the
initial conditions for Equations (5) or, in other words, the
coordinate numbering system was chosen such that X(h‘,f?) and

t(o&,/s) would be smooth functions to first order.
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In order to solve for G; (e ), it is convenient to de-

fine a new functlon )y such that

= 2
G (y= N (o) + Exl ('7'7{) Q (%) et +

+ %r(wu.)fQ(Z)‘JZ
(21)

Note that since Gy(o0) = 0. we see that A,(o)so . Substitution
of the above relation into Ejuation (20) and consideratlon of

Equation (12) ylelds the result

_ 2
}\l[/.,./)_ )\, //5)_ ;E:_L[\(“_Lo)z ,l_-';;-{— + (T_‘L‘Zo")]ca("f‘/d)
(22)

Substitution for Fl and G in Egquations (15) by means of Equations

(17) and (21) leads to the following

2t
I+« !
o

____)\’(/5)+_ v+l P (p) (st-8)—

4 (H-U.T*’

" [ [Ta@der (g >J’P<Z>d2

o

i 4t = A (%) + T Gl () (ex-p)

l-w 4 (n-u)‘

[ty [ () [rese]
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These two relations may be solved for Xy and t1 to obtain

2
i 25 [, oA ] L[k P .9

, (23a)
t’_—.l—“o >~(e£)+___l+u-e N (G)+ T+l I3 P (s
Foa h O N e T 00
#LE () J Q(Z)Jz+(:u) chz)d._z]
(23b)

After Pl(/g) and 0j(<«L) are determined from Equations

(12) and (1#), A|

Xj{x,s ) and tl(og/f) may be determined from Ejuations (z3).

may be determined from Equation (22) and then

Similar treatment could be given to all x4 and ti, so
that the coordinate transformation would be smooth to all or-

ders. Considering xo and tp, we may rewrite Equation (6) as

follows:
< Le — W, o7é/ Y74 +a2_ o’é
J 1+ u, ¢ ] I+ Jdal + -_IZE- .7&4,0
2 L2 u,-a, erA %z - Q
47/6 LI- + tlj J/d’ -+ f-u. 2 j’;o
°

We substitute from Equations (lO) and (11) to obtain

5z [ 4= E%"—’ ff'/)-%'—‘-‘w—s’f‘z'
’+“ ) [ &+ %’Lf‘? (&)_7 (24a)

wles J-—-[’f p)- 52t Que]

+(,———_'%) [ %__b"' (/4)_ gi-t_-_i_ ‘33(“)] (24b)
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The derivatlives _-_7_5__'. and It are determined
Jol oy
from Equation (23b) to be the following:

Sy - smwe dAL W) a'+: [G («) _ P d)
LA I+u

2 o
T+l - ! d@. 3 -¥
+ & (ot-p) = + (Hu) Q, (=)

I — ru, A, 8)_ ‘ P
R B NI Y

— ! -
7 (d/");z‘a?l;o+££(/u)‘7?(/d)

These two relations may be substituted into Ejuations (zka)

and (24b). 1Intezrating Equation (24a) and noting,k}q)=o ,

we find
¥z _z‘ -F[/d)-l— ___/;D_,é_) -
I+ (/f-u.)
ol
- 2 -
_%L(Ti'&;) f Q, (2)dz + b}w(w)p(/g)/\(«)

o« \
~3-Y /-uo a//\ (Fel)(3-1)(3+us
8 Jea, f “ (Z) @dz+ +(/+u e/ P9 (=)

-3 -¥ 4
T - 2 ”]f QA2 dz - j;' qy; P a)

(1+u)

+[_L+_u_ /’MM ) _ (FrD(3-¥) Q, <«>](a¢ )
ct

2
+L%D° B (B)Q (o) _ (wr)s-r) Q Co)
[33 /-c:z ¢+ ]/

(25a)
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where Fg(/d ) 1s the homogeneous soiution. Integration of
Equation (24b) ylelds the result:

“'-4- écec)+ 3"[ )fPCz)a/z—

/-«
0

- ¥+ __LL[_'A& o) -+ J v “‘ao f P(z) JA:(Z)JZ_

A ,
— ¥l u, 0 (ol) A (8)- (o’+/)(.s-r)('3 YUg) Q(u)f P (z)dz

by I—ud (/-
/A 2 d. I
p 3L [ Y41 ! 3 - P* (2 z+Q’12 . )
T LE T +(,-‘:§;]f a
4 _z__/_ (¥+1)Q, coc)P(ﬂ)— I p? A ( 8)+
/- u

+ Btl Pto) [J T‘P(o)-[ﬂ-')é)(d)jeé

(25b)

where G:( ol )1s the homogeneous solution. Boundary conditions
ald in the determination of the homogeneous solutions. Com-
bination of Equations (2) and (7) and separation according ‘o

powers of € results in the following boundary conditions

X =0 at e=/
Xo = 0 at == I+f
0 at ‘“(_1/630

Application of the firet condition to Eguations (25a) and (250

to

has the result
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-6 T+ Ry (6) F’ﬁd)
Z(/d)"' 4 (,_“)Z (H‘u)]/ -+

e [ i fQ(z)Jz ”“.;) f"f;@a/z]+

+ U - J-ULe -U o / o M(z
+ Bl iews Q (g) szue PN ()4 2 Yf[ Q (2)- Lhus P(]%Jzi—

E (8)=

l+u.

+ (¥-1) (3- r)[-’ Lo . Q(,a)f P(Z)JZ- 3+U~° P(/)fQ tZ)Jz
t '/3; ﬂ: 24 _L.l (1+u.) I‘QZ(z)dz-L lu-z (I u ]]P(z)Jff

4 X+l { P.(e) EM)Q (8)- 322 zo)J+ Y+l P 94)+

32 |- G+ )2

+ Q) [3 r Qo= (v Pep)]- MH)Q‘O’)j/;

[-w 2
-]

(26)

Application of the second condition to Equations (25a) and (25b)

ylelds
G (j+8)=~-F (8)- ¥+l b’+l Rpli+f)_ B (g)
2 /8 2 /5 4+ (/-HL) [(l u.)+2 Urw) J/ﬁ

+I_yt‘_[_/L5%:. @ (1+8) A (8) = 1=ua P(g) A (t+/d)]+

I+oL




g | +u,

| [
+ =X [ i-4o 1"'2'9, (z) dA. (=) dz - {le ﬂf,’ () dA, (2)Jz 1+
Jz /=&, Jz J

+ (h’+l)(3-x)[L_ Q (“./g)f P(z)dz - .__&g P(/)[ (z)Jz]

{[4 " (“'“)Jf Q(z)JZ _'uT (' : ]ff’ (Z)a’z

+1_£“”EmuO0¢rL!m”+14 PW_hIQ(Wﬁ

|+U-

S BEQE | 3x G ga

TR {P(O) [(T‘P l)Q (I 4'/) P(O)] (H.u,) , :(/J)—}-

/- a

+ SFE[Rp+0 0re)- - 2(7r)G, ov)P//)}
(27)

Ccmbination of the first and third boundary conditions yields
the result
Fo (0) = G, (0) =0 (28)

Subtracting Equation (26) from (27), we find
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G, (1+8)- G, () = l;_' {[ Q. (1+4)- Q, (/)J/, ¥ ,_a_')}

(a—ugo)z (1+w)

r i) [T Qende - 5 fir o com-aga] -
2
[)\ (’1—,5) >\ (/5]/:’(/3)'?.;. ,Z_I(l “O)JQ (z) J/\ (Z)Jz,+

i*A
+ (¢+)(3-Y) 3 e [a (+f) - O(,a]f P(2)dz- ﬁi‘:,f’(ﬂf@m

2% | L+l I
TR L T a+u)]f Q(‘)JZ

2
+ (36;%-%1) [PI <°)[Gl (I+,3)" O, (/527-4- Q,Z(F)" Qz (/f/d)})d

+ T z(a’n) P ) + % [P (/y)4-0 (1+0)- P(a)] +

22
(l+u.) ’_“z

- (3'*1)061+p)[P(o) ZP(,ﬁ)]
/-u.‘ (29)

The same approach 1s used for the solution of x2(¢,,a)
and ta(a,/i ) as was used for the solution of xl(u,/&) and
and tl(u,p ). Instead of specifying initial conditions along
& = O , the above equation is solved for G2(/6). Once
X

this is known, F and t2 may be found from Equatilons

2’ 2’
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(25a), (25b), and (26).
In solving for G2( /d ), 1t is convenient to define
a new function A (}ﬂ) such that

G ()= 4 (/o')+ Bt s, fQ (p)+ IX L C\)ZZZ)JZ

G- u. )2 n-«.‘)z

+ Lo Lthe Qo)) () S ./__.f %2 S /\ Az g,

3-

“m.)s]f Q (z)d + g:’-t-l P(O)Q(!)/e

2
“E o Qs B(ET) EPs

+ (r+1)(3-2) Zf‘ﬁ-‘; Q (o) 7P (2)d=
(30)

Since Gp(0)=0 and A@x0, 1t follows that )\z(o)= O . Substitu-
tion of the above relation into Equation (29) and use of Equa-

tions (12) and (22) to substitute for Py( & ) and [A (rga)-A 2

leads to the following eguation for )\z

>\2(/+/5)->>_//5)= r Qlup+er C\?'(H-/)

I+£ 1+4
+ K Q [/+,o')f F’(z)o/z. +r0(/+,di[ (zM’z

A (31)




where the definitions are made

[

T+ K l :
NET4 LOrw)? + (-« f}

o
R
n= (¥+l) -4 L+to K !
= G e s el e

J-7 2 L
4 /- [ZK‘ z'(r+o)(K —/)j "'64.2)_{
z

/-

o

r = ~(y+1)(5-7) 3%
J 9

(I-uo)
r, = -‘[)’f-l (3-3’) 3*“0
4 ) ?7:2573 K
Substitution for ngfﬂ ) in Eguation (25a) by means

of Equations (26) and (30) has the result

T b= AP B B (e p)-

L ¢+v)

" A
" [y [ Q@ m/ o

L 4
- - - -3 ¥[-w A
e85 iy RO AP P e

y. o
i (o fle i ook

- [y ] [Qlende
(o]
+L iy + 25 /"’ ez(z)gzjf

[-]
L 7 Z(m)@,w Pl8) _ s-r Qfey - (FFIRPCaIu. g

- 2 3 P S
32 = Z -u (1+)
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Equation (30) 1s used to substitute for GQGx) in Equation (25D)

with the final result:

> )\ Vel Ghls) oo -
/- : *-é- Cd) * ;' /iﬁf (u:/5)+-

_,_3»*[( f (z)a(z+(__4__)zfca (Z)Jz
+ﬂ[_/_t&3‘/‘/f,,[2)._4& dz 4 1-ue fQQ (z)_gL sz.{_
g i« Jdz I+t ' dz
o] [o]

A T+ 0 Yrl )(s
+ G e QO Peo- y )]s i) g / p e de

V4

+ ZX [[ I+l —Z‘.— + L2 *]‘[P rdze [ Bt e T “]'/’ u)Jz

+ %’_ztl_ (TH)@,C“)[R(/)"Q. (N‘)J"' -zi-z P(/)f@( -/J)

z
/-«
o
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These two relations may be solved for Xo and to. The result for

X2 1s as follows:

= i—‘z—“:-. [A)-A (/)J+ i;—,*—'[%%‘% Al G;cecz'](u-,a)
3’4-/ P\(at) )\(IJJEI u.) F’(/l)+(lf-a) Q(%{]f-

+- (UH):(J-&') {@*uo)(' -U,) P(/A’)'{Q (z)dz + (‘,cu")(')*“!L Q(dJP(ﬂJz}
/-UL

(reu)?
3 Z
I {z () Q)R P~ 5*5') Q- [(a’-n) foet T ] Pz,a)f(-/ )
(32a)

The following result 1s found for f-

4+ = J-u, A(.‘“, _tz_g-_,_ >\(/4),._2_)’_+I olc«) _LA?](Q( -A)

F 4 z u.

[(#’)f Q) dz + () f"’P(z)Jz +

+ ZLIN - (D] [0ra) Q- (-4 RG]

y Li+ta,

+ 3 [i-ue f?;)(Z) —.L—JA dz + Jt4o f/E(Z)—J)' dz |+
! Jz I-w, dz

o

+1)(3- -U, - J+Us P ZJ
+g»)z(3 ¥) (.c’fé‘)z ch)f P(z)Jz. ;:u §df@() f
vd

4 3T J-b“ {[4/’14\ + (,%T)-—' r/sP (z) dz ...[VH‘) (‘m) ]rQ (z))z?
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[0 7 - B (i ) - o,

3v-1. plraydsa.
+4(u-u) ! /d ( /6) (32p)
Once Py, 01, PE’ and 0o are determined, Equations
(22) and (31) yield A and ,\2 and then Equations (32a) and
(32p) yield XE(""/ ) and te(-z'/,),
FIRST ORDER SOLUTION

A first order solution will be found for Equation

(14). After separatior, the first order coefficlents of that

equation are related in the following manner

KE-/- e, [/-'o’n)]Q, (i v-/d)-[_7- u.,(/-zrn)]Q, gd)'f'

+Thu, K QUrp-b)r¥nu Q (54 )=0
(33)

If it is roted that r and s are constants and i is

the imazinary unit, a solution of the form
Qo= [(reisls | (reie)s]

is found to satisfy Equation (33) if n, by (or g:), s, and r

are related in a specific manner., (Note that XY and u_ are
parameters in this relationship). The relationehips are found

by means of substitution for ¢1 in Eguation (33) to be as fol-

lows:
K[lf-uo(/-b’h)]e.r tis ~[1 o (1- Yn)J+

+ T Ke.r(' b,) zsu-h)‘._,o,.'m° LN Fush 0 (34)
]
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Consideration of the upper or ‘lower sign ylelds identical re-
sults so that only the upper sign 1s used here.

We are primarily interested in periodic solutions
which result whenever P = O. If Q) 1s periodic, Equation (11)
and (12) indicate that Py, uy, and aj also are periodic. In
the analysis of periodic phenomena, it is convenient to trans-
form to a coordinate system where the period is equal to R,

The rules of the transformation for the precent case would be

Yew s Yeoa Pk

In this new coordinate system, the period 1s known,
but the transformation parameter § has to be determined, This
parameter S 1s actually the angular frequency in the old co-
ordinate system. The frequency will be a function of € in the
o0ld coordinate system but 1s always R in the new coordinate
system which produces a good ceal of simplification. In essence,
this transformation is identical to thre one performed in Ap-

pendix A,

Setting r=0 and transforming coordinates, we ob-

tain the following from Ejuation (34)

KD+%(/-~(,..)]9_"5 - [7— w, (I-rn)J+ Tnu, Ke,"(."ﬂ)

+ ¥nu cf -0
(30)
The above complex relationsh:ip represents (after sep-

aration of real and ima:ilnary parts) two relationshlps between
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8, ¢ > and n. The values which satisfy these relationships are
denoted by s(o), %(o)’ and n(o). These are the values of s,

ﬁ, and n which produce periodic solutions or neutral oscil-
lations for infinitesimally small perturbations since Equation (33)
glves the asymptotic behavior of Equatilon (14) as the amplitude

parameter goes to rero. These two relationshlips are
klirau,c-rn)Icow 8 -Li-w, (1-rn) ]+

FIM' U, K ol &= g9)+ Ty, o =0
o) . ) (<o)
KLiva, (-mm)] o s 4 w0 u, K. ain (- 4")
- Xh- (o) ua . ¢(0)= b
If terms of the order %%i zﬁf are considered as negligible com-

pared to unity the above relationships# 8implify to the following

forms ;
<o
co) _ fn t S
Bin p - rnto)u_o
cos g = o)

Neglecting terms of the order u°2, the approximate solutions are

found to be
(4

4
5= 2tL7 = zfnmu.o Li-c- ;"%’ac»)qz
o) .
¢‘ =(m+)mr F [-g:-a/w ere Ci%v-l)]

*These relatlonshIps have the exact solution

@ _  {ieu® [-enDi )Tk e) v Ry (=) (K 21)
eow S 2Kk -t )T ()R]}

b “ - Lieal LU=t 2 (¥ R IF (K1) = 2y (-070cEY
2(7[.“'%. [Kzﬁl ’_uo (I_xnlo))(,(l_ ’)]

If u, 1s not so small, these exact solutions should be used
instead of the approximate solutions.

(37)
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m and.ﬂ-are positive integers (0, 1. 2? ete) ,ﬁ indicates the

approximate number of half-wavelengths contained in the chamber
length, That is, for the fundamental mode _Z = 1, for the sec-
ond harmonic J£ = 2, ané‘uo forth. The possible frequencies of
oscillation equal the natural resonant chamber frequencies plus

(or minus) a small correction (of the order of the Mach number)

due to the time-lag. The resonant frequencies only occur when-

¢
ever n.).--. %‘L . Since ﬁu) is a product of the lag
(o) (o)
é and the frequency S , it represents the ratio of the

(-]
time-lag to the period of oscillation. Therefore, 1t is seen

from Equation (37) that the neutral oscillation occurs whenever
the time-lag is approximately an odd multiple of one-half the

R co) ¢o)
period. It is also seen that & = and ;5 are double-valued

()
functions of M .
If terms of the order of uo2 arc neglected, one can

readily see by tracing back through the transformations that

ce) )
s L2 W@ & = w®

where @ is the anzular frequency in time coordinates. Substi-

tution into Equation (37) ylelds the result:

°)

V= A oz o I' (- :rn'->)]

‘) (o) m

L ; )
@ (2 h-.-l)ﬂ' + [—g anre M(%—a)-—l)] (38)
Tnese are the ildentlcal results found by Crocco through a small
perturbation analysls. Thils 1is perfectly understandable since

as € —»0, the perturbation becomes infinitesimally small. How-
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ever, whenever €& 1s not infinitesimally small. the relation-
ships between s (ora@), ¢ (or ’é‘), and n will differ. It 1s

the purpose of this analysis to fiﬁd the relationship between

s, #, n, and €. This will result from analysis of the non-
linear terms. Only to lowest order in €, will the results of
that analysis agree with those found by Crocco since modifilca-
tions occur when finite-amplitude oscillatlons are considered.

1

It is important to note that there is a "continuity " between
the results of Crocco's small perturbation aralysis and this
noniinear analysis as indicated by the identity when the amp-
litude parameter goes to zerc. The nonlinear modifications
to Crocco's results will be shown to be order € or higher.
As can be seen from Equations (37) or (38), the
chamber may oscillate at various frequencies depending upon

. ()
the values of ¢ .(or' 2:10)) and n(°>.

Flsure 9 shows curves

nf §..(0) Vi, n“) for various modes of oscillation. A stability
analysis (see Ref, 1) shows that a cmall perturbation grows
{unctaple) on the shadea slde of these curves while 1t decays
(stable) on the other cide. As already mentioned, tre small
nerturbation would remain the same size alons this line.

Firure 9 cncws wide ranges of ore Z: ve. n plot where cniy

ane ~nde ol os:illation ouccurs; c.g., 1f 2:'= 1 and n slichtly
zreater than .4;j , only the fuinuamental modes occur, None

of the higher harmonics are expected (to thls order in € ).

The resulls reported in Ref. 2 show that the ranges of 2: and n

where thls nor-superposition occurs are the ranzes of practical

interest. Therefore, our noriiirear analysis will be simplified




o |

by assuming that to lowest order in €& only one harmonic ap-
pears, All other modes are stable. The amplitude of that
harmonic which appears 1s defined as € . This glves specific
meaning to this parameter which until the present has had only
a vague meaning. The oscillating part of ¢(e¢) is now € coq F
plus terms of order c?.

Given n‘°); s‘°) may be determined from Equatilon

(37). Now, Q1 (¥) is known and Equations (11) and (12) yield

Uy, aj, and P;. The results are
Q( ) é-[l% "-%4. E(‘%F é_[éisei?{‘_““e'iaj

; P e ~¢R
“qb - e.‘ .‘4- f(ea 8 e;‘!; -Q ;]

%L [Ke" IR TR T e ‘%+ e-z‘ﬁj

u = '};'[Ke_is

(39)

Note that as points in the 2; n plane ~re consldered which are

(o)
8lightly distant from the vs, n“ﬂ curve, s becomes dif-

o
(o) in the above relations., Furthermore, € may

¢+

be different from zero so that the higher order terms become

ferent from s

important.
Next 2y and tl will be determined. Substituting from
Equation (39) for Ql(lfyg) on the right-hand side of Equatlon

(22) we have

)\,(s-r%)-)\‘("ﬁ):- r+| [(nw.)‘ +(_“ )][e‘se‘ +‘-¢se-4.

b
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The solution 1is readily found to be of the following form (if

the condition )\‘(o). 0 is noted)

A= K (). * e o)

(40)

where the following definitions are made for the complex con-

jugates Kl and K‘*
-i{a
1= /6 /-Coe S [(H-u. )2 + (-w )2
o
* ¥+ ‘s
K = - S ____.‘-‘- [ d
! le 7. (14w, LI (-w,)?

Note that the solutlon to the homoger.eous part has been omitted.
Any function with period s may be added to the above solution
and Equation (22) is still satisfied. . As is seen from
Equation (21), this function would appear in the same additive
manﬁer in the solution for G;. This means therefore that many
specifications of Gj(e¢) in the range O% =« < | are possible
which would give a smooth coordinate transformation for all ©&
and/d . We shall consider the simplest one by setting the
homogeneous solutiqn'to Equation (22) equal to zero.

T+ (0)
4 » S ——»2_{77'.

Therefore, both K and kﬂ*Go to infinity as the reconant fre-

Equation (37) shows that as n(0) »

gquencies are approached. Tihls solution is not valld whenever
s = 2IT. Returning to Equation (22) and setting s = 277, we

have

erid  -RTS
N (Lep)- N (o) == BU[G (T—*]{ e
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The forcing function on the right-hand slde has the period 1.

This is also the period of the homogeneous solution (/5634)-5 45))
so that the infinite amplitudes of the periodic solution are due
to the forecing function having the resonant frequency. The

proper solution in this case 1s not periodic but instead is

given by the following

-m;
)\(/4)=-_t_m+(’_.___2][un/ e j}’d

This means that corrections on the locatior of the characteristics
in x, t space oscillate with the same frequency as the flow fileld
except near the resonant frequency. Near the resonant frequercy
a secular solution is found which indicates continual distortion
and may be interpreted as meanling that a shock must eventually
form before the solution can be periodic.

For our purposes, it shall be assumed that the frequency
is sufficlently far from the resonant one and the amplitude
is sufficiently small to obtaln periodic solutions without shock
waves., If these were not so, e.g., £ large, double-valuedness
of the coordinate transformation might occur indicating shock
formation,

Using Equations (39) and (40) to substitute in Equation

(23a), we obtain the result

R {[K L_p_ + lH-u.,,J[ ‘s(e ?P_ezqu -ns(e 7%_ 1.4’.‘)]

/4-u, e‘LS --l

I~2A.°

+ [ i+ %o (e P* e'%)i— K ‘-u° (e -is e.-l:%)](_r_ﬂ;_;_%)j?

(41a)




o

Note that conslderation of the transformation (35) has been taken.

Similar substitution in Equation (23b) has the result:

X
— (-4 l+u g -
l - 'e::—" 5 K /‘.ﬁ.:.c.° OJ [/+u. u.o ]

I-uo I+u

+[_e___ - Kk & e_‘v’ (Hu- é)j

: h <Y i
| "‘J}:I = [k (ﬁ—->,_:‘ (27714 (Tl_ua")'z (e ")_]

! g'i%
+ -
| {[K I-M.L° “’ [H-u. + -
5 ik 2 U] (R
+ e - K & e ] ( X )}
-u +u 3

o5 L[ e B
+ ?r _é_ K (e'-ua)z (¢ ¢ ﬂ-/)./..(‘__l__*%)‘ (e -I)]
(41b)

Note from Equations (39), (41la), and;(hlb) that Py, Qp ui, aj,
X3, and t; are equal to a complex function plus 1ts conjugate,
They are actually real guantities but are left in this form for
the purpose of simplifyiny operations which involve thece quan-
tities,

Frem Equations (2), (10), and (35), it is seen that

f”:;i =x-f =%-€% +0 (")

ru W=t-€'2‘;"‘o c*)
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ozand/é may be found to be the following

R cwF [rn e+ (-u )t
‘%-[cf*%,)r, (- +O (€

H

2-=g=1[0-8)t -(1-4)2 ]~
%— [(l"‘kz)i‘, - (-4 )]+ O €*)

Substitution of the above statements into Equations (4la) and
(41b) for ¥, 2 and 5‘,{- % readily shows that x; and t;
are periodic functions in time at fixed space positions, that
is, neglecting terms of order €f , a displacement (in time vs.
space plot) equal to the period of oscillation (x held constant)
results in a certain definlte change in o euui/f. The change
is the same for both a¢ and‘/?and equals the period in charac-
teristic coordlnates, These statements are true regardless

of the space position or the initial time. The implication is
that there 1s no convergence of the characteristics (shock
formation) provided that €% and €i; are not so large as to
cause double-valuedness of the transformation. Note that if
the oscilllation were at the resonant frequency, the periodic
solution would not be obtalned.

SECOND ORDER SOLUTION

The primary interest is in finite amplitude oscillations
where higher order effects are important., In general, these
oscillations occur at values of 95 (or ), n, and s(orey )

[

other than those values at the neutral stability 11ne(¢’) ) ‘°))
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We shall be concerned with values of these parameters close

to those values on the neutral 1line. The amplitude of the
oscillation will be assumed to depend in some continuous man-
ner on the displacement from the neutral line in a parameter
plot (e.g., '?: vs. n). This will be implied in a convenient
manner by wrilting the parameters as a series in € about the

neutral line value. The series are written as follows:
¢o) ¢) 2 c2)
¢=%+c/¢+e/a5 +
co) O 2 €2) '
b =A + € + € E S
' ) o

¢o) ® 2)
=1 ’ r €0+ et f"c +

o o - =
Co) <) 2 ce)
n=N +E€EN + € n 4+____
(o) ) 2 (=)

S=s +€8 + € s 4+

W=w% cw’ +ef 0% ____
(#2)

This of course, 1s analogous to the eigenvalue perturbations
of Appenaix A, Here,.the paramcters are not eizenvalues in the
strict sense because they appear in the boundary condition
(combustion zone) and not in the differential cquations, It is
also analogous to the approach of Chapter II where the amplithde
was assumed to depend upon the displacement from the neutral
stability line (actually a point since only one parameter ¢y ap-
pears),

The transformation (35) 1is applied to Equation (14)

and the series (42) are used to substitute* for.ﬁf, n, and s.

¥ A Taylor serles expansion 1s used whenever the series appears
in the argument of a function, For example, ‘cs+'¢p)_

Q (s o v’)*_ de (s“) ()J)Ee 5(')1"€z5 J’_J- J Ql ““"*‘P)C&S")J +O(€)
’
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Now all orders may be separated according to powers in € .

The second order equation is written as follows:
co) ‘0) 0
K0+ w, (I-¥n )]O,(s +3ﬁ)-[}*%(l-b’ﬁ’)]%(?,’)

¥ ZKQ s+ % -£7)+ G, (% (°))J 2y R
(43)

where the defilnition 1s made
Ro= R ~[-rQ % B)-Q B+ KQ (% B-p )
6, (B g B o, () 4 49 (52 )+
o (o)
+Yn‘°u°d—$—(5 + *7‘”)}75,;_; +EK§%‘L(5 +%"¢ )"'
g (%

First, R2' i1s evaluated from the first order results.

IR 4

Equations (39) are used to evaluate a; at the point ¢) ?%

(or/d,/ﬂ ) and at the point 9} ¢‘°’}g-%m(or/ 6(.)/5 A“) )

arc U, at ?g, Y; . Egquation (%1lb) iz uved to evaluate ©3
at these same points. The result of these substitutions 1in

Zguation (E-17) 1s the following

! . 2;.% . R o
= - Cc
F?z = (CL” + LQ{. ) c + (a.” La‘.')e. + Cpn (44)

where the followlng definitions apply
= 2
ap =g, [K* v 2 + RK we s 1]+

+ gy [KF o R(5- )+ 2K csw (s -2 g+ eow 4]+




+ 33 [KZM(Z$-¢)+'5K cod (5_¢)+ cow ¢]
+ h [K‘ (cow. 2 (s- ¢)_ cod (Zs—;é)).,.

4 2K (cow (5-2 $) - con (S-¢’)+ ot RP - coe $] +

vl oo [OFE B i (ov - ain o -min g +

+ K (ain & - an s +m<s-¢>)__)-

- "_11“_@:!) H-uo [Cod, S - cow (S5- /d)+l<(co¢. 2s-cog (25~ /d))]

- nb’é(:-r) L [i- cot g+ k (con s-c«.cs-ﬁ))]
a;, = X_‘[sz RS + 2K airu S]+
+ % [sz R (5-g)+ K Aine (3-24)- win. 24]
b By [KE i (29 B)4 2K aim (5= §)- sin B]
+ 8y [K°(aine 2 (5-8) - in (25 - )+
r 2k (win(s-2) - sim (S-$)) +4in B -sin 2]+

n¥(¥+i)s [k dste v Lree [y cowCsrf)-

128 (1-¢og ) l+u.°

S Cou 3 — cot K (eose 3-couls-got m¢—:)]_
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L_[.(_J_) l-ug [K(M s—m(s—¢)>+ .A.w._/d]-

I+u

nac’f v) K f-f-:to [Ms —aire (S~ ¢)+K(.¢&rz_za-4bu(zs-¢))j

G=2[g +¢ + g m;ﬁ+7_4(m;5-1)][,<a+

b
Fe

&
A

+ |+ 2K c«,s_:]"

- n¥(rr)s ~ue + %o . .
64(1- coa s) [K Il+‘:.° + /:‘: J[(K")E‘“"S‘M(S"“?‘)J‘

- wre B+ K [ain (8s+g)- < 2’.7}*

‘_,_ n¥(3-¥) -«

32 T, [’“ Cor Pok[eses- mcs+,d)]j’

+M__°l K _Ii_et_e [coq. s - m(s+¢)+K[Eo¢£3 c«@wpg]j
JCOREE S
() - (5

Ym (/- Tn)
/6

= (5)

1]
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It is understood in the above relationships that s represents

()] "
S ’ 95 represents ;ﬁ“% and n represents nc°), In order to be

consistent the inhomogeneous term should be evaluated with zero
order parameters. Any error would be of higher order and
should be added unto the inhomogeneous terms of the higher or-
der equations,

Combination of Eguations (39) and (44) and the defi-
nition following Equation (43) yields the result

=(arin) et B @oim)et Y,

o) . _ce) 4 <o) . d® . P,
ot et

_-s“) = e’ _ 49 T BN ) o)
+[-Ke.‘ -] +Ke™® ¢+e,“¢]——_‘-‘-au}—&—°;

: ¢ 2@ A9 Y
= {LK([/*‘UB (-ra)] e« ™M™y et(s™ 9“?___@; °_

ro) o)

_'LK([H- w, (I-n (°)] "'s (nng -“3 -# J)_g._::

{[K { (S“) ¢‘°’) -¢. gf“j_— _

. o) o) ¢o) XY
. -i(s - ) -ts (o) ')
_L[K I A N J7 W g

2

(45)

ch
. B
U,
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Now Q, must be a functlon such that whenever operated
upon 1in the manner indicated by Equation (43), another function
willl be produced which satisfies Equation (45). Since € is de-
fined as the amplitude of the lowest harmonic, this lowest
harmonic can be contained only in the Ql term and not in the
0, term. This lowest harmonic (ci‘/}’) e.-”% ) 1s referred to as
the first harmonic even though lower values of s might be pos-
sible if n and g: were in different ranges. With this

definition of € , o contains only a constant plus the second

harmonic (em”// e'u};‘ ).

The difficulty of the appearance of the first harmonic
in the 1nhomogeneous part of Eguation (43) is overcome b, setting
i1ts coefficient equal to zero. This gives a complex iinear
homogeneous relation (or two real relations) between n(l), s(l),
and ¢(‘). These linear homogeneous relations are trivial how-
ever since they only allow displacements tangent to the zero
order curve in a ¢ » n, s plot. (This 1s analoguous to
the m = 2 case in Appendix A). No generality is lost by
setting )\"): ¢"’= s*= 0 . This means that the perturbations
of n, @ (or ?o' ), s (or @) will be of second (or higher)
order,

With this trivial result for the first order perturba-
tions of the parameters, it 1s seen that R2 and Ré are

ldentical. 02 may contain only a constant term and a second

harmonic term. Assume it is of the form

Q (¥)=(A +1 Al e ¥, (A,-LA‘.)e"“’f G,  (6)
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Use of Equations (44) and (46) to substitute in Equation (43)

yields the result '
(7. +<%,) (A, + 1A )e“'z’ﬂ. (2-7,) (Ar-iA‘.)e.'uy |
+_(%%E_o_ C =2y R =24 Ca,”-f-i.a.‘.)e_z':?-r-
+ RU (a.- "'z)e'-zw+ Ru C

where the following definitions have been made

7, = .K[H-ua (/-rn"’)] coa 25 _
_[I
%

“% {"r*t(°))]+ rny, [Kcoq_ 205~ ¢ s cou 2%“1]
K [/.-I-l% (- rnw)_].d.én_ 23“)* rn‘O)uOEK . 2 (Sl.g ¢cc:) _

- e z¢‘°’J

Separation of the above equation according to coefficients

i

of ezc‘f’) e—li"f) and ] yilelds the three equations
()Ir + 1)7‘.) (/4'_-0-2./4‘.): 2w (a-p-t-iaz)
(7r~‘:’zi ) (Ah-i./i‘.')= 2w, (a -ia)

e

The first and second relation are actually identical and yield

2.u.° c,

the same results. Each is complex however and actually two re
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- lations which may be used to solve for Ar and Ay. The third

relation is used to solve for Cp,

(ar, aj, and c, are known

r
from lower order analysis). The final results are

Ar = 2u..° (’?i‘:l *Z?r.."‘v-
e,

/Q, = Ru, (T’?r =N %n ‘)
i 7 :‘i ,ﬁr
R

CY‘= 1=V C".
(¥+1) (472)
If the definltions are made
L .
=7 aw dan ( A‘)
A r
As oDry o
= wez8 = 4neé
(47p)
Equation (46) simplifies to the following form
Oz (28): ZA cod R (?fi'r Q)-f— Cn (48)

Substitution in Equation (12) and use of Equations (11) ylelds

the results

R (P)=2AK e 2(H+a+8)+k L,
@ = L ATt 2(P+0)r K mZ(%+a+92]+.§‘:l(:+k)G,.

Y =A[K coe 2 (z,l;-r- s +e)- cew 2 (¥ +9]]+2L(K">Cn

(48b)




®

(o)
In general, s 355 in the above relations but the difference

1s of order €. . Since these are second order coefficients
given above, the éffect of the difference 1s of order éi‘which
’ will be seen to be neglizible since the analysis will not in-
| ~ clude fourth order terms. So, for our purposes, S§= S(°) in
l the above relationships. (Thls is not so in Equations (39)
) where the difference produces a third order effect).
’ Equation (48) show that the second order effects in-
1 clude the addition of a second harmonic to the waveform of the
? oscillation plus a correction to the mean pressure and velocity
in the combustion chamber. There is a phase between the first
and second harmonic terms represented by © . The amplitude
of the second harmonic term is proportional to €Z£A and the
magnitudes of the corrections to the mean flow conditions are
proportional to €‘ Cy\ . (There will be an additional cor-

2 R
rection for the mean pressure produced by a C'Q term as will

later be seen).
Now, ¥p and ty can be determined by soiving for XZ
from Equation (31). Equations (39) and (48) are used to sub-

stitute in that equation (with consideration given to the trans-

formation (35). Then Equation (31) 1s rewritten in the fo:low

ing manner:

A (s+¥)-A(¥)=fnc +—'—+r’_‘.m3+.2_":_42m.s}

4

g1(s+0) ais , .
rAe r; _n ans als
+2?: 4--il e ‘:i (e™°- e ‘)lii -
_r : 2ts 2y -2
5 + (e -e-.“)j e . fq Ate 4-9)*

Ve ~2({s ry -3(s 2is Ki r | -2(s -is -LZ?)
L o L P [t Ki __1__L< -
ry ) ( <. )5+ 3 (& e ) €




®

with the condition /\t (0)= 0O . The solution 1s found to
be the following

/\ (¥)= (e 2i¥_ -1) + V*(e_-zi?’_,)+¥3_’_

(49)
wlth the following definitilons
v = 0_1“_“7 rAle 28 eu'C“e))-o-%(l-e.ds)
3:5 (eis _I_e.3£8+ ‘s)-__t_. (he‘s_ei_‘_eu)]
V" =

["‘A ( -2{ 6 e‘-ZL(S-o-a)) ;&(‘_Q-Zl‘s .

30-%«.23)

' ' -3(S -2¢S r¢ (s_ -2(s ~is
S

e

N C + r‘s r Kaecn s rq y
l + - A S
Zj " R s Rs FE

Note that 2 and Vl* arc conjugate,

In similar fashion to the solution for IN‘ , the
homogeneous solution has been omitted for the sake of simplicity.
The addition of the homo:ieneous solution would mean a change in
the coordlnate numbering system as can be seen from Equation (30).

Note that the solution for )} given by (49) goes to
infinity as 9—91117‘ where 4 1is an integer. This perilodic
golution is 1nvalid near the resonant frequency in the same man-

ner that the periodic solution for A' is invalid,.

Now Equatlons (32a) and (32b) will yield X, and £,




®

after certain substitutions. Equations (39), (40), (48), and

(49) give Py, 0, A, Pp, Qp, and )\Z . The assoclated dif-

ferentiation and integration operations are tedlous but straight-

forward so they are not glven in detaill here. Only the result

for t, 1s presented here:

t‘=_l.:zE9.V %.1.‘_*‘&9. \é_?é..;..zft[ "_K]QC%#q

2 R 3 NN ()
3-¥ c W L 3x o kC ¥
+ 4 1+ U ) .t +  (-w)? "Ts +

+ V-&-l [.l___q. CK <-K )+ __-_“.-9_ K(Ke. ts + K'*e.és)]_

¥ - (- ¥,
"‘7:1 [( “z - K, ‘*""-'2"1"" K K‘e‘cs)ec ) ’6)*'

) v sy (%%
1+2a,° K, + L2 KK, e’ e.‘(“ "’)J+

+ .3“0’ ;:z;o ¢ (K, - K*)%-ﬁ-l_ //*“0 Ki(k e ~K,*e_is)%

_ (y+)-r 5-& . ¢ -LS - (R ) (R -
?)Et—ui()z 2 ’;L[e e A‘ecse‘ 7

]

p (I)3-0)GB*u0) i[5 - s -is (Rt Y) s a(R-15)
g Cree ) S [Q' ¢ +e & ~e e ]
K2 -r[am +3-r 1K
'6 /:4-(: u. C/ u) j T % 4(/-‘%2) Gry ) |25

X*IXM( g){ (b’+)) { -(s 142‘)“'%2_ e.‘:s e_{(u-%))+

- Lo %l ____L__L__
+?—Z_4 I -w R I+u. H—ub +

[}
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|-%e 20 % :ée'zi ¥
+ v (e -1)+ ltug + “' e -¥
2 2 ' ) /‘Z‘o (¥ /’)
‘s ve) 204 2i8 .
_ Y+l kAe’ e 3-¥ (A 20 Y
fs Fru, (H‘ ) ;:‘)’) P (liu.o)z (e. -l)

—l) + b‘+l [H-u.)Ke Id-&-

I O_uB)KKleise'ZL“,)l_ X+l [(“_a)K_'_(/ Uv)KK l7 t(% 2}))

zi’ffa

;-b’ 1-Wp 22‘%_'
+ J2 KI (e

|
ru,

)+ e kKe® (e

-)]

0 ¢ ZZV 3 Z& Z/
‘ (Y-f-lg)?l ri(:i)zu) h;t e s(e «_Q¢C +ﬂ))+

(r*g‘)c(?:a;)()\:f-uo) t;,; eis(ezé Y ei(zl& *q/)"))_

g . %
_ 3 ¥ [ ¥+l 3-¥ 7 iK 23 [ RETE
[4() u‘) (l-u‘): Js < ( ')

- 3-7 ¥+

3-r U ZL%
/¢ 4(,_;,;2) +(:+z.g)’] s (e - ))

r el %é is i(%+¥
Z”*’,u Ko iRrH)

L] 3-r ) - D’+I 2% 35 2¢3 zi?}
+4[4 (l-u. ( )]e '%Te +




®

* 2l %

+13%e (e _)_,_ I+ig ‘{*(e""i%_,).,.f_l. Ae-_:ue&:ie(%{-%) |

-\ =2l (34 e)_u . 20 2
- fil ke oy %)+ A7 e %-1)

fs (1+w )‘
°

’ 3-% ‘:A K ~2£(9*‘) —llv
* 7. (_,_u:‘)z (e. "")"' '{—L(IHIB)K e

¥ ce -2 ¥ )
P AL G-w) KK €N L [Zl*u.o)K.*'t- (l-ag)Kig*e'“Je"‘m %)

+ ;zr [t-u.o K|* (e-d%_’).’_ ,,fua' K K e-‘se_-uy ')]

Ifuo

(KH)(J zr)(s o) 4/ _-is / i il
8(‘“) KSL- e s(e_z ‘*6.‘ M*zf)‘))

(¥ - P A - -2 -
Melcee) g S (oY 0ew),

3-¥ iK? "3 x i 4
3‘ [4)(:15’;") 1~u) j Ts ‘ “ A"')‘*"
o )

+ 3-Y £y 3-r -2i ¥
e [%0-u) (H-U-) 3 (e. ")""

P50 e et R R,

- -2l % ) VL Y
CH[HE () B ()] R 2 g

(50)
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Three types of terms appear in this expression for t2: periodic
functions, periodic functlons times the quantity 7%¢ ..’ig ’
and terms linear in VL and 2; . The first twd types of
terms are the only types that appeared in the expression for
t, and X, and if properly interpreted, they indicate that if
C&.and/d(cn’ &L and 3; ) each change by an amount equal to
the period in characteristic coordinates, then the x position
is unchanged and the time changes by an amount equal to the
period 1n time coordinates. The presence of the third type

of terms (linear in ﬁi and %3 ) indicates a correction

in the time period and they should not be interpreted as secu-
lar terms. This correction 1s a second order effect which in-
dicates the wave travel time changes from that of a quiescent
field whenever finite amplitude waves are present. A signifi-
cant part of this change 1s attributed to the change in the
mean conditions in the chamber (see Equation (48) ) but there
1s more than Jjust thls as can be seen by setting CL =0 in
Equation (50). There second order terms which are linear in
‘%L and }g should be combined with the zero order result for
to and would indicate a change in the averase slope of the
characteristics due to the finlte amplitude oscillations., If
%i - %ﬁ is held constant and %i and %& each are changed

by &I, Equation (50) shows that the change in t, is the fol-

lowing
o+ ZX ooy ol ]G+

+ DL (LLe cs [K.-K.']i- .f.‘_:%: Kis [K,e'“-x’ "J)

I+u,

- | -y
3 (L » S50+ [ &0+ & ])f




If C;. and U, were set equal to zero and s were set
€qual to an integral multiple of 271 , the above term would not
vanish. So it must be explained by more than change 1in mean
conditions, nonlinear effects coupled with asymmetry of flow,
or off-resonant oscillations although these all have important
effects on the above term.

If the (u1+a1)é¥%l and (ul'al)f%EF terms in Equations
(6) are examined, it is seen from the results of the first order
analysis that each 1s the product of two first harmonic terms.
This 1s clear from Equations (39) and (41b). The products
each are therefore, a second harmonic term plus a constant,
After Equations (6) are integrated, the constant terms produce
terms which are linear in %ﬁ and %L . The physical inter-
pretation is that the wave distortion (a first order effect rep-
resented by nonzero ty) combines with the finite amplitude (a
firet order effect represented by aj; and ul) to produce a sec-
ond oraer change in the wave travel time. Consider a given
characteristic, say a P-characteristic; At each instant its
slope 1s affected by the value of the invariant associated with

tne interesting (¢-characteristic since

ﬁ% s Wta = Bl P27 (Q+Q)

wriere Op 18 the steady-state value of the @ invariant and 3' is
the perturbation. Qo has the same value for all ¢ characteris-
tics. P 1s a constant for the given characteristic so @' is the
critical term which determines the variation in slope. 4' is a

trigonometric functlion in characteristic coordinates so that




o |

1ts Integral over a period is zero. Due to wave distortion,
however, this is not so in space vs. time coordinates and

this integral of Q' may be nonzero meaning that the integral

of the slope, or in other words, the average slope, may be dif-
ferent from its steady-state value.

}

THIRD ORDER SOLUTION

It is necessary to perform a third order analysis since
the first order coefficients of the series (42) were found to be
zero from the second order analysis. The perturbations of the
parameters ¢ (or &), n, and s (orw) are therefore of second
order and the second order coefficients are determined by a third
order analysis,

If the series (42) is substituted in Equation (14)
(with 7% ¢"’.—. s~ 0 ), if the transformation indicated by Equation
(35) i1s performed, and if the third order terms are separated,

the following equation results
S (1-5)] @, (“+ % W)=l (-5, (%)+
+ )’h“)uo[_kaa (5% -4+ & (Y - 3]s 2u, R,

where the definition is made

R 2 Ry - 1Q (S B)- 4, () k0, (52 = A0 q (B “”)jz_m
te) te) n‘O) (o) (o)
_K{[Huo(l-fn )J%(s F P+ ¥ d‘&“( )j

+[Kj_%_ (s“+ 4 /5‘°’)+ d@. ‘°>J) rn %w

The Ré term 1. given by Equation (E-17) and may be evaluated

(51)

by substitution for a5 Uy, u,, a tl and t2 from Eyuations

2)
(39), (48), (41), and (50). These guantities are evaluated
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at the combustion zone; i.e., along the line ¢L =:?L (or
cc=§/9). They are substituted in the exponential form for the
/

purpose’ of simplifying the assoclated operations. The R3

term contains many terms which will be evaluated one'by one

before Equation (51) is solved for 03
The first seventeen terms may be evaluated b" us
of Eguations (39) and (48). The first term* is 2[( ﬁﬂ“ Q.

a, and a, are evaluated at 9’ ¢“)9’ ¢’°) (or at,d-‘(“:/a:w

co)
Tr.e error in using 96 rather than ;5 is of second order and
would appear only as a fifth order effect in the analysis. The

final result for this term is

2[/“‘" Mjoz 2, = MX(C +¢d)e %4-

le-id)e N H (3,.¢A>¢., rG-ch)et
where
=[]
c, = A [QN_ (29-3¢)+ Kcod (26 +2s - 3¢)+ i coL (28 +5-3F)
+ K¥ cow (26435 -38)]
d = A[M (R6 -3 @)+ K ain (20 +25-38)+
s K win (20+5=3P)+ K ain (20435 -3¢)]

g = A [m (26 - @)+ Keod (2 6 +2s - ) +K cow (26 -¢-5)

*In accordance with the short- hand notation of Appendix E, a

represents a,(§ , 9?) and aj, represents ai(}) @, ?/) ¢
0
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+ Kg cod. (26 + S‘¢)J+ (1+k) C,.[COd.. ¢ + K C-M-(S-¢)J

/'z = AM(?@-P)* K don (29+2$-¢)+ KM(?9‘¢-S>

+K: g (2O+ s - & )]+ (}+K)C,[:KM-(5:¢> e ¢]

[(
It is understood in tie above relationships P 1is ¢ o), s 1is
sﬁo , and n 1is ruco) . This 1s true for the expressions to

be developed for the other terms of Ré-
The second term of Ré i1s also found by substitution
from Equations (39) for al(;),g) and (+8) for ag(},‘)-ﬂ,})-¢/ )

with the result
2rn)* Y
- b/-l)aé‘ q_/ = 7,?2 {(C£+LJ‘£)63‘/+
° ; _ -z'})
G s Goik)eh )Y

2
m =- & nt

£ g

c, = ,4[%4_ (26-28)+ K cow (RO+2s5-RP)+

+ K cou (20-24+5)+ K* cow [26‘2¢+35)]
4 g Alun (R6-28)+ K wn (R6+Rs-2 p)+

s Kain (RO-RP+ )+ K*sin (20 -24+ 35)]
g = A[coa. (29—z¢)+ Keod (Re+R2s-24)+

+ K cod (29'2;0/— s)+ K* cod (fe-2;zf+s)_7+ (I+K)Cp(/+l( cod

v
\—




o

4, EAEam (26-2¢)+ K 4ir. (RO+2s-24)+

+ K Ao (?9~z;b’-s)+ KzA.'m_ (29-2¢+s)]+ (I+K)C’.Km s
The next fifteen terms are developed by substitution in similar
fashion. The results of these substitutions are
Third Term: .

2R ) v J'p . ,}9)
(wir) %% =7 [(%*‘%/)e"’ﬂf-(%"da)e n

-+ (i:, +£/)3)e.i% + (‘?J—éé)e'i%f

n Yin?

—
—

3 §

where

c, = A[%(ze-¢)+ K cod (ee+zs—f5)+
+ Keot (26+5-g)+ K cou (ze+3s-¢)]
dy = Aluin (20-¢b)+ K sin_ (26 +25- @)
+ K au (29+s-¢)+ K <in_ (20 +35 —;é)J
7y = A[¢°¢-<39‘"¢)+ Keow (Ro+25 +¢ )+
+ Keaw (20 -5+ @) +x" cow (20 +s+g)]+
+(’+‘<)Cr [aod. B+ Keow (s-¢)]
hy = Alsin (20+¢)+ K ain (26 +25+8)+

r K tin (26-3t@)+ K’ ain (26 +5+9)]+

+(I+x) C [KM— (5‘525)—'4‘:"-¢]
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Fourth Term:

Brh]s = e e e
+(34+L/z4)e + (ﬁ-c/g)e-‘ }
where
m+E[M(I4;L)R" e
c.4—_—:/4[co¢ 26 + KcoL (RO +23) + K oL (26 +5)
+ Kk* cod. (26 +33)]
= A[m 20 +K an (20 +25)+K an_ (26+5)
+ k% ain (26+3s)]
9, EA[W_ 2Ot Kceoa (26 +R5)+Kesa (26 -5)

+KPa (20 1-5)]1- (1+K) C’: (J+K coL s )

/4 = A[:wrz_ 260 +K wz_(29+-€s)+-/(m(29-s)
+sz_ (29+S)_]4- (/-I—K)C K e s
Fifth Term:

: 3%
in o (en) )]s’ »}l((ca_“g)e 2
+(cs-£<£)e"’"" + (3J_+ié.)e£% +(f5—l:é.)e-£}’j’j

where

m = [ (B () - L (5]



s[co.._ 3}é+ 3K coe (s-3¢)+ Kt eot (25-34)
+ KJCM (35-J¢)]

u.n

4 E[-—.A,Ln_ 34+ 3K wan (5-355)4. 3K ain (zs-3¢)

+ k' ain (3s- 355)]

g = 3[(eK"+1) cow @ + (2K +K7) cod (s-g4)+
.,.Kz cod (Zs-¢)+l< cod (s+¢)]

é_ = 3[_‘(21(‘3“)44)»7. ¢+ (2K+K’)M_(s-¢)+
+ Kain (25-@)-k in (s+@)]

Sixth Term:

(Zb’n _zrnMJ(a.) a._.m[(c +¢J)c +
+(e-id)e ™V 4 (g uit) et +(g‘-<é)e-
where
7= [(5) - Sm ()]
S[Cod. 2P+ 3K coa (5-24)+ 3K2c_04,(85-2¢)+

+ &7 coa (35-2 2)]

‘%

J

oé EEM&¢+3K m_(s-zy)f-axaw,_ (25-2;/)+

+ K ain (35-28)]
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s[(esz)cu_ z/d-;- (RK+K>) cow. (5-24) +
+« K coq (23-2¢)+K cod (3+24)+ 2(RK%+ )+
+ R(2K+K%)cod s + ex¥caq 25 + 2k coe s]
A 5[—(2/(24-1)4&"_ RE + (RK + k) wam (5-24)+
P K i (R5-28) - K aie (s+24)+ 2 (2K+K’ )ain s

e . .
+ RK™ et 25 — 2K v SJ
Seventh Term:

- 2);7:'“ C‘,za‘o =m ZZC +-c‘/)e. 4- (c_u/)ew

o+ (?71-('47)&"".;_ (aq’_éé_’)e.“ /’j

where

7 = = InA /I;/)‘
¢, = [c«. B+ 3k cot (s-§) + Ik* coe (25'¢)+’(3“4—(35'¢/)]
dJ, s[_ sin. f+ 3K din (- 4)* IK® aim_ (23-¢)+K3M<35‘¢)]
%, .—-_[3(2 K1 )eot f + K +2)(204 (3#4)+ 2 cod (3-4))

K (eow (230 )+ 2 cow (25-;25))4—

+K(co¢cs-¢)+ R cod (s+¢))]



@ o

h EE(ZKZ-H)M §X+ (2K+K3)éuln- (3+4) 3“"-(5-¢))
+Kz@‘-"_ Lz.g#-;ﬁ)J—ZM(Z.S-ﬁ))-K(M (s-g)+
+2 i Cs-r-;b)):]

Eighth Term:

)
3 . 3
[i-§ G 2] (5+id)e

c)e gtk ot )

where

= 1\ -y )(2-Y,
el g5 e

- 3
c, =[]+3Kcod_s+3K2wd.Zs+K 6«,3sj
d E[3K 2ire 8 + 3K 4 28 + KO im 35]
(?9 = 3[-(2K2+/)+CJK+K3)GM_S + KZCAJ.. ZSJ

/} = 3[}?(-#Kf;)diwu S +-f<a,4241_ Ef?]

Ninth Term: Z,) V
Er At = (G hlea-id )T
i . _iv
+(7,+i/»,)e,”+(g,—“’q)e ,]7
where
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CQEAE( co-d_(29+5>+ Kz w,.(k@-l-Ba)- cod RO
—-K cod 2(94-5)]

JQ = A[[(M(ZQJ—S)-F KQM<RQ+35>.. wn. RO
- K 4m 2 (o +$)]

% EA[K cod (20-5) + KX cod (RO+3)-cod RO -

~K cod K (94'5)]4- (/+K)C._(l< coL s —1)

hy = A[{M(29~5)+KZM (26 +8)- asn. 26 -

-K aen. 2(6-#-5274_ C”'K)Cr K . s
Tenth Term:

7
o, & {(a +LJ e.'u +
(Y-

. Y
c —u/)e_-u + (f;o + ié)e."ﬁ-(z; -2/;°>e-‘/j

— R
Qo=EKC4¢$-I+K coa_zs+;<3co¢3$]
= . 2 .
‘f, —[-KAm_s + K _auv 25+K’A¢Ln.. 3:]

E[(zxz-3)+ 3(k>K)eoe s + K* caa 25]
A,o EB-K-’- 3K3),u'm_, S + K‘»A&rv_ 25]
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Eleventh Term:

. 1/
__Xg;_‘_a;uz._: {( +1J)eszﬂ+

(c -La/)e,-u +((?«,,+4/7)e_ (?...4/») j

where

7 = - L
1/ 9uo

¢, = A [K%(ze+zs>+ Kicod (RO+35)- cod £O

~ K cod C29+s)j

e
I

! ‘Aﬁ(,u;n. (26+23)+ K* 4in_(26+38)—airn 26
- K sn (264—5)]
B = AlKeod (264 25)+ K* caw (264 3)-
- cea 26 - K cae (R0-3)] 4+ (K-1) G C1+K cou s )
by 2A[Kain CRO+25)+ k2 ain. (20 +5)-

~ain. 26 - K 4.24:_(29-5)]4- (k-1)C,. Kaire s
Twelfth Term;

Y
. ’{
Nln JV T be f = T [(Cm* “!e)e- g

9,) ’
-3t ¥ A .
"'(Ciz"‘ 12 )e. g + (%z +(:/,]Z)e "+ (m_iéa)e—lgj

where
- ('Xh;)z
2




e ®

¢, = A[c.u_ 2(6-F)+K coe 2(6+5-F) + K cae (26-2F+5)
+ K eoe (26-2¢+35)- cow (26-38)-K coe (204+25-34)
K cow (20-34+5)-k*coa (20 + 3s—3¢)]

dy SAfain 2(0- ) K sin 2(6 +5-B)+K sin(26-24+5)
s K din (20-28+35)-ain (26-3 $)-K ain (26 +23-34)
“Kain (26-38+3)- KZM(29+35-3¢)]

, sA[m(ze-;éh K co (26 +25‘¢)+
+ K cod (2e~s-¢)+K2 cod (Z26+5- ¢)~c«_(z@~z%)v

-K cow (206+25-2 ¢)~Kco4_(ze-2¢-s)-/<zco¢(29-z ¢fs)]

h, EAP}AL (26-)+ K win (26 +25 - P4 Kain (26-5-¢)
v Kl (20 +5-B)-ain (26 -2 $)- K 4in (26 +25-24)

K sin (26-28-5) ~kfain (20 -2 +s)]

Thirteenth Term: y
Y4 ’
[2(5)'- 250, g, [ I
4 Y- 9
. LY , Y ’ -
s {@75'% )63 " (Cta"?’a)c} y"' (37:""}35)‘: +(?3—‘6,) /’j

where

=[3(_z%)’_ ™ (rz)

2%
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c, E[m_ 2d+ 3Kk cow (5-28)+ 3K caa (25-24)
+ K’ cow (35-2¢)— coa 3?(—3/(@.4, (5-3¢)-
-3k* coa (25-38) k7 cou (35-3;?5)]
d, E[:-M z;é+ 3k ain (5-2@8)+ 3K* 2in (25-28)
+ Klarn (35-28) % ain. 3f - 3K ain (s-34)
-3k ain (25-3@) - K uin (35-34)]
#s -:-[(Hz/r’) cod ;5 + (2K +k?)coa (s-g)+
+ K- cod CZS—;5)+ K cot (5+@)=U+2K?) cod Z/d
~(2k+K’) cos (5-28)-K" coa (R5-24)- K csa(s5+2)]
4, s[-(/mo)m/d b (RK+K) ain (s-4)+
¢ K tire (R3-B)- K dom (s + $)+ (rarxP)ain 2 § -

-(ZKf-KJ) <ert (5‘2¢)“K2M (Zs-zgf()"‘ K v (5+Z¢)]

Fourteenth Term:

zb"n) ala/a_, ff J =m, Z(:<C‘4*"J)e“

c-tc/)--!‘,‘_*_(?-/-t/)e_ +(f*—‘/’ )etlj)

where
0"




-100-

c, = A[cod-(ze';é)*-K cow (26 +2s-)+

F K m(éefs—¢)+i<zco4. (6+35-@)-coa (26 -3§)

~K coa (26 +zs~3¢)—-K cae (R0 +s~3¢)-K"co<_’ (29+35-3¢)]
44 EA[M (29-¢)+K.<u'/ﬂ_ (29+25-¢)+

+ Kain (6 +5-3)+K* sin (26 +35-B)—sin (29-375)

~Ksen (26 +25 -3$)-K dem (RO +5-33)~K" _aiie (20 *ss-s;x)_]
Ty = A[CM-— (2e-$)+K cod (RO +25-@) + K coa (RO-5-0)

+ K oa (26 +5-4)- coa (26+f)~K cou (26+25+¢)

- K cot (20-51g) = k" cow (26 +5 +¢3]+

R ICOIA gf[m/d—x sin (5-4)]
/1/4—‘-‘/4E4m<ze-¢)+ K ein (RO+25-@)+ Km(«’e-s-;{)

+ K' oin (R6+5-¢) - win (20+B)- K 0in (26 +29+H)

- K sin (R6-5+0) - K sin (26 +5+P)]

r RU+K) C %E:o¢%+i< %(s-;ﬁ]
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Fifteenth Term:

2¥nM f ‘9 Z(c +,J)e
Y-
B

p
-3i¥ ¥
i) o Grih)e e (g - e
where
m. =- ¥aM /¥-1
o 7 \/3 )

. = *é“[CO-d.. 724 * 3Keod (5-B)+ 3Kk cow (25~ ) - coun J/d
- 5K cod (s-34)+ K’ cod (35— 4)- K360d-(3s-3¢)—31(2(_o¢(zs.3¢))
45_ = 21—[_ Aer_ ¢+3KM (s-¢)+ JK‘eM (25-¢)+—4€m_ 3/¢5_
L 3K sin (5-3@)+ Klain (35-8)- Khin Os-3g)-3Kun(zs- 3>
E[H-ax Co¢5+K2JKM ¢,4m S +
4.5%[(14-2}(&),44)1_% + Kain (s+$)-(RK+K’)ain (5-4)
- K® aim (23—;!)]
l/.re —[7+'2K cod_ s + KZJ(.Am.. ;5)(/-/-/(%5)-,-

+ 2 9{[(’*2'(2) cod ;5+ (2K +K7) coo (5-/)+K‘co<.(zs-/a5>

+ K cad (5+}ﬁ)_7




@

Sixteenth Term: }) -
. 3 ¥s
HOES [ e
+(C‘ LJ“)e,‘v + (3, +L/o )c, /’4_ (fb-‘A ) -‘ﬁf
where
“E ()
¢, :-s[coa_,/ﬁ-a- 3K coa (s-4)+ 3K coe (es- g+ Kcow (33-;5):]

- 2[&«. R B+ IK cod (5-2 f)+ 3K “tod (25-2 f)ri o 52 0]

+ [cod_ 3;5+- 3K cod (5-3 &)+ 3k° 40!-«(?5-3)@/)4-/(::«,(35-3/)]
%‘ = [—M B+ 3k aire (5-F)+ 302 ain @5 B+ Kfan_ (35-/@‘{]
- ZEM Rp + 3k ain (5-20)+ 3% ain. (25-2 4) + K ain. (35-2¢f)j
+ EM 3 7 + 3K ain (s-34)+ 36’ din (25-3p’)+;<’m(::-:¢)]
S E(z»(w)(cu. 2 g-coe g)+ (K’-K)eow (54g)~
- (5K +3K%) eot (5-F)+ R(RK+K®) cow (s-2 #)+ 2K eow (s+z¢)]

+Ka[% (83 +B) - 3 coa (25-4)+ 2 coq 2 (s—gf)] '

e = [RRT ) (2 sin i ) (5K k) s (50




~(TK+ 3K ) ain (s-F) + 2 (RK +K°) ain_ (5-28) -

- RK gin (s-2 )+ s {_:Mrz, (Rs+ @)-3sirn (25- F)+2.0im 2 (s #)]

Seventeenth Term:

G s g [T A [l e
y- ¢
+-(C”-£4’)e-x¥+ (2., +(A) + (¢, —(A )e_l"'}

where rn
m, = - (F)

C,= cot J+ 3K w(s4;z{)+ 3K* cot (Rs-@)+ Kot (35-4)
- coL 24 = 3K cow (5:24)- 34° con R(s-4)- K eow (35-24)
i Jn S -eine B4 o3k ain (s-f)+ 3K den (25- §) + Kdum, (35-¢)
} + 2¢—3K43m_.(S-Z¢)~3KZMZ(S-¢)-K’M(35-2%‘)
%, = (ZK‘H)(z- cod [ - tos 2;~)+(2K+K’)Gam 5 -
- %(5+¢)~¢M_(s~2¢y+ Kz(ECOLZs—%(ZS*¢)_
- Cog R (s-¢))+ K (zmswo«,(s—;d)—w.(su;é))
A = (2k° w1) (i e~ sin 2)+ (2K+K)(2-¢on_ s-

- _aor (5-0-525) aer (s- Z/@))-J—K 2 ain. 25 M'L(‘?S*/é)

- <2 R (5-¢))+K{-Rms+m(s-¢)+4&n.(5+2¢>))
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The rest of the terms appearing 1in Ré result from

coordinate transformation (see Appendix E) and involve t

1’ tg
and @9t1

evaluated at the points ¥ ,zj, and %’ - P, %—;é .

Vi
The following 1s the first of these terms:

({1‘“ ' (-4) J—éo %s, —3—)%‘ o Ja /%" ba "Cr—n) JP“"

L‘"f

) J-.F)b [;t -, ]+[_}(?"‘) zm_]a- s Ja"
[g,_,—;r )T B e, 7

Equations (39), (41), and (48) are used to substitute in the

above relationship. As a preliminary step in evaluating the

above term, we find

?;
.{& J& Q 2:_ F
[ e )‘tozvf R J/?‘s ¥ fﬁ‘”’)
%-

(lu)s J?’" [t ts] [3( L ] Q:‘J_:‘ /4
0" A
+[ 455 - (ifr—'j“)z]““ 3{%‘5. f=(z+i5) e

. -ziV
+ (Z2 - iz R Z
(z . )e vz
where the definitions are made as follows:

Zzs—In (-u?) _@L C.’.‘.ILL*_"L:L"(‘ “0)-7

129 I = Coq g @-x)u(s-zﬂ)o-l(m 2(5-/)
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- mgld] (3 JLS [a 7 (qu(s e/),« K aw p (s ,d))+
+ Ketin (S24)- ain z¢]j+ ¥n Asfecn 2(0-g)+ K tin 2 (6+s-¢)]

(/*Lg)‘e

+ (L:L-)z S E den 53/4- AK M(S—;zf)+ KZ,AJ«n_ ,/23-/d)+,4m Z/é"

~ RK i (s5-2f)- K* sin 2(5-;0]-

- fn ()0 st [(/+L<,2‘;dfls“o)zj [to B+ (K-1)eou (5-B)

- ot 2@ —(K-1) eae (52 £) - K coa (25-F)+ Kest @ (s-#)]

* i e o= s e ks es-h-

- K s 2 (5-@)]. d’r/Lz(;(?’fsu(/)zuo) [in f v & sin (s- )

yaine 2P K sen (5—2?!)]{3(’»’_—%)2_“4] (%—L)zs [in 24 -

- RK wen (S-Z;JJ*K2M2(S-9{)_]+[I—(71 an [M ﬁ/-

- R s (5-4)- K sin (25-;5)]

Z=1in G-u®) (:’;; ‘ B('*"“’_)c:‘\'s% z;, LG- K)M(S‘-ZS")

+ K s 2 (S-¢)+ Ao 2¢J+-3ﬁ: 5[:-u° =(co¢(s-2¢)+:<mz(s-p))
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+ g 2B+ K m(S'W)]f_ rs A fcoe 2(9~;5)+Kw_2(9+5-,é)]-

(143 )*

-(%)z S [cod_% + 2K Co¢($—g§)+ K? cod (25-%)—@«. 2/@/

- RK coe (5-2;5)- K2 coe 2 (s_;zf)]_

- IR (Ve )l-us) {__5-5‘6—24. —
£5% s (,{W;)")J[%p»‘(i( ) in (5-4)

+ o 28 - (ki) abe (524)- K win (25-F )4 Ksin 2is-g)]

AL B o 4o

- K oeow 2(5-p)]- {r;y(/(-ltai%g-r)s [coe 7+

+Kcow (5-7)-cow 20 -k cou (s-z/d)J+

+[3 (3{—‘4—) ZMJ( ) [ca 2P+ 2K esd (s - 2;5)+K tod 2 (5 - ;p)]
+[’ b’nj s[co4,¢+2f< eot (s-gF) + K* cot (25 - ¢)j

S LTS S

+ I/Lz_i (3-Y) K aen s /:’%:_}. "y (141)‘5 [(/+K‘jm_§2)+

+Km(5+¢) K dere s;))]-}- 3”‘5 (1- J’n)[K 1) tem )D—

- K <o CS-%}-J— K . (Sf@)_]..
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_il (Y1) (1- u)Sa [z'+’u~;1(?:ij [Km(5~%)—-(f(-l)co-¢5

- et CS+¢)-(K~1)co{. ;£+(K )]+ ‘Xr 5,3.;3 stm <.

+ K aine P+ ain (5+@)]+ Irn (3-F) l-ue g [:wm 3 -

/ ; 6% (v )¢

“K de (S-F)+ K win s ]

Now, the eighteenth ferm in Ré may be determired

[(Z+LZ) 2ty A+ (z- éZ)e_"’+Z]/“° E(;t]-
(C +<J )e + (e, -lo/)e.ﬂ%+(do,+z/1 )e.
+ (% - "é; )eﬂs’)’

where

l-4o I+ Up
e =~ Xﬂ"/ [.-K | +ULa + 7~ A o
[

¢ 32 /_ cod S j[z<ms-¢°¢p+w¢,(s 7@))

—_ Z£(__M_5+M_/;ﬁ'+4‘cfz_(s—¢,))]+-

+3/;%’ £ /+uo[2<a>¢s—¢o~4_(s ¢)j+z_.4m_s < (S- p)/]

+38 Lo lue [z %/¢+z /-m;;)]

/6 /+u.

-4 [+&o
= - &+ EK Yy 7 -0

°z(? Jz /= ¢og S J[z(/~%¢s~w¢/+w\s )5))

+ Z (- g s + WL_.}D#— M(s-;ﬁ))]-
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-

- J‘I K
/4 S

,ﬂ;'f& [z (cu, s- cod,(s-¢))~z. (w’.s-M(s-¢y]

T T T [z G-eug)- 2, <in J7

=- T-rl + ltue
W [KFW;%J[Z( do¢$-64¢¢+co4_(s %))
_z(-«wz_.s-m% in (s - ¢)_7

3~ °
e 5 I+u [Z(““"-(S B+ lirn. s )+

+Z(w¢(.5/) Cod.S)+3 _!_/“o[}M%,,.

S Tfu

+ Z(%% )J 0’1—) M"\-‘—'_]Z[ e s -

/- cod s
-C—°d~¢+co¢,(s¢)_]+ Jd"_tf_u-a
S

e u

°Z[4m. S—

—_ ‘-“ ‘+
h . =-X [Kiza, *5-2%

i 32 o ] [z (M S~ in - wincs- /))
+Z (/-u.d_ S~ eod g+ cot (5-4 ))]-r-

3-¥ K 0 _
76 s rLt: [Z.<“<-S-Co¢(s-¢))+zz<.4m, S -

- ()] B L e [ e e s g
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1~%Ug +Ugq . .
_%_ Ck /:-::m'j—TJ‘ Z’[M ¢—_4¢'ov. S+ _dem (S-¢)J

R e
LT} e e g)

MNote that = 1,

m
18
Eguations (39) ard (41) are used to substituie ir

tre nireteenih “erm with the rc.ult

n “o "‘;’ ! . 3 ¥
(42) (55)= 4 =g f g e e
¥ p
-3¢ . N/ -(
-?.(ch-zﬂ/')e.: "‘)'4-(9;, H/;,)e ? 4 (77,4"4”)& %j

2
o) ()
Ciy = ”2'35'9') A G fain g + G5y ain 5 -4)

where

(k52 )i (23 -5)-Kodir (35 - g)tain 3 -(2K-Daiin (5-36)

- (K"—zk)m (zs-3¢)+ K* il 3 (5-¢)J+

(3-¥ X r-)*
T 10 4

{ . u)sz (5-$)+2K coa (25-4)4 K eme (35 - -4)




o @

— 00 (5-3F)-2K coa (25-38)-Kk* cow 3 (S-%)]+
"'(T-?LJ?[M 9{+2K cod (S-¢)+K‘ cod (25-§)~ coe 3/0{

- 2K cot (5-34)- k" esa (25-3;/)]f

({” = (Zi-z‘)o(:-gl)zs [Kgl'*:;;)s + (a7 u,)] [Coo 3¢+(2x-:)m(5-3%)

+ (K‘-ZK) Co. (25-3d)- K% coq 3 (5-4) - cou B~ (2K-1) con (3-%)

-(K‘-ZK) ot (25-B) + K¢ cou Gs-¢) ]+

L (3-0@-) [m_ (5- )+ dun_ (25- f)+
102 + (1 “

+ Ksn (35-4)- sin (5-3/5)- RK ain_ (25-3%)—1(‘44{_3.5-;!{]
+ZT:/I°?—EM /@ + LK air LS-}é)? Kl,w;ﬂ_ (25 —%)4-% J/_
- 2K ac ('5-3¢)-Ke%(’?3"3}0)_]j

= (+| -l)"s I+u + (-
?19 = Y/)OQZ) [K( : )%(D )—] [(CM 3 - ,)(H_Kﬁ

+2K coa S)ain g+ 4 (cod @ - cow <5-¢))(/+K2+2K¢M_5)

+ ¢(c¢¢ (5+ ) + (RK-1) coa @ - (2h-K%) ese (s-%)-

_K"C«M,(,? ))]4_ %

512 &,\:’7; @*K'+ CKeots)ain g s
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4.2;25 (/<+¢M.S)(4oh_ B~ K dun (5~¢))]+
+(/T'u°“)& [Z¢(/+Kcu. s)(M4/Km (s-;o’))]j |

i 4 2 )
h = (‘o’ﬂ)(h’-l)ls [K (777:) + (I':‘T;)] E@_}L 5/,/4-_/(24- 2K cod 5)44'«_ /d_
] /1024 /- Cod, S \

-¢ (1+K "+ 2k cow s )(ain B+ sin (5-¢))+

/

+ ¢<-m (5+8)- (2K-1) mine @ = (RK-K*) din (3-4)-

_KZM(25-¢))]+ gj-x)(b‘-,)‘ { K E(l*Kz-I—ZKWS)M%%S

SR (i-u )?
+._2¢(K+co¢s)(co¢¢+ K cod (5-¢))]+ &::Zo_)z[ (/+K‘+2Ka¢s)m;§
+ 255 (i+i< coa s)(éo<,¢+ K cod c’s-p’))]?

By means of similar substitution, the twenti€th term is found

2 F , Y
Rin ("“° s da. o, j‘ ad ¥ =m {(c wid )’
- b, b ! 20 20 2o
?f/) 2 d% P dy t

%.

* CCZo- L{o> c'Jiler" + (&’o.‘- ééo)eiyﬁ + (ﬁo- ('r/;. )e‘?%j

Y
¢

where

m 5(2¢Yh ¢ /rmut
£o ¥-) R




o o

e = (7-/)‘(3’4-/)5 [_/‘E‘{bﬁlu )4</ « 7

20 1044 [~ cag s Zu"i", L (- 5B,

¢ (RK-K?)sir_ (25-38)+ K* aon. 3(.-f)+ dim 372K e 50 g
- (2k-K*)ain & G-f) - K* sin (35 2f) - win ] +

+-(_—§'121.L (‘u)z(/Od.(S l;l()‘* ZKCO’{LZ(S ¢)+

+ K cod (35-z¢)- cod (S-jlé) - ZK cod (23-3;5)

K" eow 3 (5-¢))+ {,,"uo)z (Co-d.. 28 + 2K cou (s-24)

+ K e 2 (5-p)-cot 35 ~2K cow (5-3£)- k¢ coa (25 -JW)]

Jao = (b;w;lzzi’/r-rzs EK(N«,) (s “a)_][(/ ZK)Co-d.- (s- 49?3)-*

/- ¢od's

+ (RK-62) ow 2 (5-4)+ K coq (35-28)-cos 24 -

- (1-2K) cod (5-34) - (2k-KkY) cou (25 -4) -k e 3 (s-g)+

, 2
+ CO% 3;»]4- (3'2?’-1) [(1_2)2 (m(s-z¢)+zl<m 2(s-§)

+ K dn (35-24)~ ain (5-30)- 2K ain (29-34)-

_Ki-dém_ 3 (s-;ﬁ)) + (,*'uof (-m 2% + 2K air (5—2¢)
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+ Kz.a',n_ R (s-@) + an 3,6'2!( an. (5-3 ¢)_K1M (zs-.:p))]

/1024 /- cod S

|
\
%o = (a)r-)'s  [h@Em)+(Fm )T {[_'(K‘. RK)airn s -

|
~K' aim 25 ~sim 5 - (-2K) sin. S+ RK-K*) ain (s-4) \

e K i (25- )+ dun (5+ $)] - 2 (14K 42K eow s ) (1-ere $ ) auin §

+M(5‘¢))j* (3-7)(7-1)° {(‘ . L[(1+KY) cow s +2k-

52

- coa (s+f)- 2K cor B - K cow (5-¢)]+

+ :+u) [/+2K601LS+K cot s - cod. f - 2K cot (5-f)-

~ Kk coa (RS-@)]r 2 (14K + RK coa 8 ) (i - mso)l_ (:%z;,

K (s-¢)
* td_uo)sz : ]j

A = ”’*')(Y“)ZS DS(ML«.:) (: %o 2K + RK-K2. ‘)m 5 |
2o 1024 I -cod S
+ K* cow 2s- (1-2K) coa ¢"(ZK‘KZ)¢44. (5_¢)_sz (25_¢)

+ Cod (5-;6)]4. 2 (I+K +2K cou s)(1- ot @)[eoa (5-9) - coe yf]j

+ (3‘”40"'21 {(7%.52 L—(K?_J)M S + aen (5+¢)+2KM¢

SR




_

- K" an (s- ¢)]+ I+u) EZKMS+K‘M25+Mﬁ—

~2K wn. (5-F)~K? 4im (25-4)] +

+R (14K s 2 ot 5)(1- e ) [ngs‘#) <%)1;_7}

The final term in Ré to be evaluated is the

following

T (1-4) s S [t e, ]

At a preliminary step, the expression [t - t‘b.] is evaluated

tc be the following by means of Ejuation (50)

- - _ Y
[tz(?ﬁ,?ﬂ) ¢, (% ﬁ,zf,“¢)]-z4+(25+lzg)e.“
| \ ~2i Y
(Zg_-‘LZ‘.)e_ ~
where the following definitions are applied

Z4 = —Sé { [ H-u)&“' K (‘_:‘To‘)a-] Gr A

+ 37 [l-uo i S V+1 ( K __i_.)+
S Itw, i-ceeS 1 (H-uo-)l +.O‘§)z

+ tue k 4on.25-acn s
i

I+1 K
-u /~Ct S /6 ((H-b%)‘ + (,_‘u‘;)z)]*

3-x¥ [/ i Y el
7 [(4(:-5,‘) (- u)’)K * Ja (lw)’)]}
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7 = P‘A(mee ~codt £ (3+6)~ c«_z(e ¢)4-Co¢£(5+0 ¢)
= R(1-cers)

+ ra (I-c.oq,fs—coq, 2¢/+co4,2(5-¢))
8(l-ese 2s)

r

+ T Rlein s- sin Isrun 25 —ain (5-24)

85 (I-cee 25)

. BK CM 2B +M(35-sz)—m 3(8-;5))
85(1-%25)

N CZ AN S - aint R5+ .0 2 f-ain (5 +24)+aim 205 -4) -ain (5 4/5))

85 (I- ot 25s)

{(m & (win 26 -ain 2 (6-¢))+

+ 1"—"Tu->z ASK-(’WL' R (B+5)- aen 2(s+5-¢))_.

1= U cod 2P -coe (5+28)
* ‘H-t I_:(u-u)K G- “)J(’ (~coe 5

" if+l H-uo K[(”_u )2 * o “)J(I- mz#-cu_(s-z!ﬁ)

/~Cod. S

Y+ 3= ain. RS- aim. 2(5-4))+
+ /L s [(: u") + (J-u.) ( ﬁ)

w76 [y + il o ]
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Z = hA (»d-m_ ZQ-MZ(5*9)-M2(9-¢)+M2(5+9‘¢))

¢ R(i-cod 25)

rz(—m RS ~ aem. 24 + ain_ e(s-¢))

* 8(i- cot 23)

r K(C—M.S-l-co-d_ 3 s + mzs—m(s-z¢)+m2¢)
8s(i- cow 25)

K (de.. (35-28) - coa Z<5-¢))
B8 (1-coars)

i e 25 - eaiid s cot (5 944)r coe 2(5-)- cue (5-24))
8s(l-co<, ds)

b3 [(‘ﬁ:)zé.(mzce-w-% ¢8) 4

,.(‘_:‘ )‘1 ﬁg’i-<co4_ 2 (0+5-B)- coq 2 (e+sy

l-« K l - : iy
2l el [ ey Cotine 2§t o setf) wains)

(i-coe 8)
I‘P‘ l+U o [ K ] /_ . . ) ) )
Tl Ryt g | e s e 24 G29)

K £, J-¥
i 40 -wr) * (Fuj‘ﬂ](c"‘- ¢ (5‘55)‘“4—35) *
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|
+/4s [_;(, u’) (“.u) Jc% 2¢ )}

Now, it.ib found that
e [t T {6 id )
) ) ]
ST % (1- “oz)

i

C
2

%‘-s {— 26@,4,7“ Kecod (s-¢))+ Z;.(M ;é-KA'm.(v-;é))}

Ju 3;_’5{25 (c.o<.¢+ch..<s-¢))+zz (sin. B - K dim (s-;é))j

fu

i

I

lf_é_l_s,?-z4 (M ¢—Ka'm.($—¢))+ z écm_gs‘-xam.a-p))
+Z (ot §+ K cow (s—¢>)}

h =Xl {24 (co«. $+K coL (s—¢))- Z (coe g+ cod..(s-¢))

+Z (M;&—KM(S-;IS))}

It is convenient to define

]}

r {=1 ¢
ii m, d
(=]
/é— 21
= m




e |

such that

Ro= e tb)e™ o (k) ™, (£00)i%, (g

This result may be substituted in E,uation (51) while |

Equation (39) is used to cubstitute for ¢, and its derivative

in Equation (51) co that the final result is
K[Hu.o(l-rn”’)JQ (s +9)-Li-w, (1-an®) 1 Q, (¥)
P, [, (5, 4 - ‘°’)+Q (- ¢)] -

<R Llb it k""’%“:zé)e*% (4 vid)e' ",

+ (Zr ~z1‘.)e"‘%] -2

,+Zg,)ei"j’

+ (Q),-Zé/,)e'igj
-5t [((‘)2 +z72)e.‘.}‘)’ + (wz _,;72)e_“'5‘/)1j_
—¢“)[(°-’3 +i}3)e."§‘)’ + (w3 ~¢'?3)c—“/éj

wiere the following definitions are uced

C) - Yuo
YT [‘K ot 51 + K cog (o9 b))+ coq #?]

(52)

wx
T

= )1‘4 [-K/u'n_ 5 F K _un (5‘°>_¢w)_ . 515“’)]

€
N

-K .
, =7 [Q-&U..o G-vn' ))) din S‘°)+ rn:")ub . (s ¢(a))]

[C*U- (-Tn (a)))c'oq_, 5<%

=
m

+ )’nm)u.° coq (5% 525'“)]

s = PR i (57 ) i 4]

€
m




°

ya =- Y)’l:)u, [K M(S“)— ¢(o))+ col ¢¢0)J

It is seen that the inhomogeneous terms contain the first and
third harmonics. Since the first harmonic is contained solely
in the Ql term, the 03 fterm must contain only a third
harmonlc term. Therefore, the coefficients of the first harmonic
terms in the 1inhomogeneous part must sum to zero and a complex
relaticonship for n(E», ¢(2), and s<2) is obtalned. The
solution is assumed to be of the form

Q,=(8,+18,)e’ " + (8,-:B, )e 4%
where Br and Bi are to be determined. If the definitions

are made tlrat

E. =2 KLi+u, (-rn)] eoa 35 - Li-w, (1-tn)] +
+ Tnu, LK cow 3 (s"’-%“” + cow 34 7]

B = KLi+u, (o) ] sin 359+ 1%, [ K aim 36 ¢ )sin 3™ ]

1% 1s Tfound b, wub.tisutio:r in Ejuation (52) that
. : 3Ly _ i
(5, +18)(B +iB)e"7 (8,-18)(B,-i8)e i

= R (Lr,f-élai)e"‘% + Ru (Ar_zb‘_)e-n%+

4'[2 “o (lr" i[i )- (w, "‘é‘.)n‘”—(wz + ng)sw— (w,+ 2?3)95‘” e"",)"

+[ZU~° (»Er-iﬁ;_) - (w. - c%‘ )n‘z).(wz - iiz )S“)- @, - ‘,#3)¢u)]e:£%

Ceparation of the coefficients of e_"'zr’ﬂ ,e‘*"'%’ei}'}’ ,

-4
and e P and further separation of the real and imaginary parts
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of thesce coefficients lead to the following relationships

€. B. - & 6= 2y, Ll“ (53a)
gr Bi + 5; B,. = Auw, L’i (53b)
w,n+ W, $“+ W, ¢‘z)=2u.° 4, (53c)
) ,
& n" + 1z 5" + ?ﬁb“) =2, L; (534)
Eguations (53a) and (53b) are solved to obtain
Br'—'zu-o [ EI: bi*'grbr]
2 F
E. + %
B =2, [ Bxbi=ghe )
ﬁp‘+§;1
It is convenient to defire
~ (3')
- B — 8
B = oA = Tn3A (5)
such that
Qa =B [efl(vg. *A)* e—Ji(-‘le +A)]
= RB cow 3 (Yu+A) (55:)
It follewe from E.uatliones (11) -nd (12) that
@=ZBK¢H. 3I(Hs+s+A)
u3=B[Kco¢.3 (% +5+A)—co<_3(2"’q*A)J
a, = LL B[Kc;u_ 3(%+95+A)+ cpe 3 (HﬁA)] (55b)

The third order contribuiion Lo the wavelorm 1s the additior

of' trnie third harmernic with a phace.
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Before solving Ejuations (53c) and (53d), it is

convenient to transform from y‘ back to ?? . It 1s seen that

23:(1—:43 (-uz

Substitution of the series (42) and separation according to

powers in € shows that

¢'€°) — i-“gz S (o) 2, (o)
o

R
ct) R o4 (2) (o) c2)
P o=l By s

The above relations are combired with Egquations (53) to yield

2) ‘ 2) , (2)
WN + 0, 37 4 g ?g ==Ru.°l,.
(2) (2)

z) ‘ , .
¥, T+, s +33?“ =au01‘

[}
where the following definitions have beer made

, ¢(°)
C.Jz sz-i- "“’3 —S‘_“

2Rt bs‘,ér‘-r)
Wy =W, (/-:oz)s“)
= ()5
Elimination of s(2) from Ejuations (56) has the result
[0, 'le‘ffﬁ “’z] ) & Jw; g -y ey ] &
=24, L4, g~ A

s
™
i

ac
(7]
|

a)
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Now, if n' ana @ give the displacement from the
0
reutral line in a @b V8. n parcmeter plot necessary to
produce a periodic solution with an amplitude of € for tre first

harmonic, 1t follows that

T =ct 2, 0 (e?)

nzet n'? 4o (e?)
If ?? and n are not too larze, this means a small dis-

°
placemeci:it produces a rinite amplitude ozcillation. These
relations may be cubstituted Into Ejuation (37) to obtein tre
relationship between dirplacenent from thic reuitral linc wnd

amplitude of oscillatiorn, The recult is

[, o=y, W I’ + (o A A LLry -0 £.]c?
| ) = ) , = P . ¢ 4 4.
V[wllﬁ ~% wz] +E‘°3' ¥: ‘?’31 ““z]z \][w"h L w‘_]i[wa y‘z—%wajz

(-8)
. . . 3
Tre errcr 1in the abo.e relatiornchip i¢ of order € and corn-
s
ldered reglicibie, Tre coefficient: or 1t nnd 2' vary
) (] °

with povition zlong the ncutral lire; i.e., they depend upon
u(o), 2;(0), €LC., 50 that the aleplucement Lo becr rormal -
lzed by the squrre root of the sum or tie Syuares oif Lhe
coerricients, If thre left-hand side or Equation (58) iz telq
constant for all points along ire neuiral line, it ig implied
that the maznitude of tre “ilcplacemert i constant in a dire:tion

riorm:l to the curve. The directior, however. ma; be inward or

cutward, Therefore, dependir 1 upon the value of the factor



o i

[) = ?‘% ElLig"“ﬁ;*zf]
VBoti- i T v [0 g ° (59)

a cerfain amplitude 6: is obtailned for the given displacement,

If the displacecment i: held censtant in magnitude along tthe

neutrael line, the amplitude will var; invervely with che scun

<
SRR T}

m

v
root of the above guantity D. Tie direction (inward or outward)
of tre dicplacement deperids upen the cign of this guantiiy o

po

and, of course, the signs of the coeffisients of n' and .
Another approach involvey keepinz the smplitude €
corstunt ard determininz the magr.itude of the normel dicplace-

ment r.ecessary to obtain a periodic colution of tris amplitude,

M

friie Jdisplacement varies directly proporticnally to [ alorn

“he neutral lire,
2\1 (e) (o)
If 2 displacenent is normal Lo tire - VL,
curve, it follows from incpcction of Ewation (57) that tre

o
i

cre displacement in the hi~dilreciion and ir the
P

o
I
v

O

Z: -direction are related as follows
/ /
n - - E“’lh"}h“’zj
. , 7’ 4
[“’3'77“}‘3“"2]

2 )
<%
Thic may be cormbired with Eyuation (57) to obtain the v-lue of

r for a normal dicplacement. Tre result ic

ncl)- ?u.L[ir ¥ - w; A ] [“’- fr-y ©;]
= -k

, , ro, 2
LoD + [o) -y o]
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This recsult may be combined with Equations (56) and solved for

(2) ‘)
the value of s for a normal displacement to the Et’ Vs,
ceo)

n curve in the 2 vs. n plane. The result is as

follows:

S A I R N L S IV

S h-9 %1 [ g -1 @ I [, - 9"

_brty-w 4,3
Loy -y ]

Note that the factors appeariag in Equation (58) depend
upon n(o) and Eﬁfo), If the zero order parameters contain

: ; . . . . c
erro-s of order uoa, 80 will the perturbation coefficients ?B( )

. Co) (o) ) )
and n(‘). If 20’ and no are exact, sSo are 2: and ”n

Ejusidon (58) shows vhat for small € (i.e., c?
neglivivie compared Lo Glg ), tnc curve reprecenting dicplace-
ment as a function of cmplitude ic a parabola which passes
throuzh the orizir.. In other words, the displacemer.t ffelass
to zero as the tnplitude :guared oes to zeéro. The shape of
the parnbola varics from poirt to peint along ine neutrsl line

as the factor [ varics,

be corstructed for a small rance of €

s

A threce-dimensional plot of ?o' ve., n vs. € may
==

0. A surface would

be obtained whoce Intersection with tre €20 plane zives

<o) (o)
the ft ve, N curves as found originally by Crocco. The
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intersection of this surface with a plane perpendicular to

the €=0 plane would give a parabola. This surface represents

the locus of points where periocdic solutions are found. The

stebility of these periodic solutions still must be determined.
The coefficlents x3 and t3 need not be determined

since a trird order correction in the coordinates is only

consistent when the flow properties are determined to fourth

order accuracy.

STABILITY OF THE PERIQDIC SOLUTIONS

The periodic solution is a conditior of dynamic
equllibrium ard, as.such, ray be ctable or unstable. Il the
emplitude is perturbed slightlg from the vilue feor a periodi:
solution, tre perturbatiorn may grow or decay. If.both pouitive
and nesntive perturbations grow 1irn abzelute magnitude, tie
perioiic coluticn is unst:ble while if btoth positive and
nezative pecrturbsotions gecay, the pericdle solutior iz stable.

From Ejuation (3.), we see that if r were ronzero,
the values o' n, 2; » and s would be different from those
fourd ror a periodic colution, In particulsr, if r were
of order €2 . the medifizations in n, f: » and s would
be of . ecornd order. Since, tre perturbations in n, E‘o' , and
¢ é&re of order Ez , the vtabllity analyeis may be performed
for colutions orly in a rance of order Cg'near the nreutral

lire, Therefore, we say

2 (R
=€ pr )
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1It has been found that the solution to Equation (33)
which results from separation of the first order terms in
Equation (14) is of the form

Q (A=t [, &)
(61)
Since r =€ e r(a), tre growth (or decay) of the first harmoni :
term is a third order effect. The effect of r on CzR; and
€3R; is of fourth ard firfch order, reupectively, such that
Che aperiodicity of the second and third harmorics are nezli-
£1ble for our purpoces.

It is corveniert to redefire the transrformitior. (35)

in the rollewings moanner

-wa =(S-Cr)d

\ne

qé"’)«. =(s+ir)u
| }:2)/5 =(5+l..")/
¢(.) = ¢ - Lrbo 5 ¢c2) = }é+ cr Bo

Jd,, = 5-ir Sia)Zs+ir

1”(.)6 :(S"ér‘),d

ae

Alro, let

Note that from Ezuatiors (.2) and (63), it is seen that
0) . )y @ 3
Bo=@ vt (M- b )+ o(e’)
<o) 2 (2) . (2) | (® 3
¢(2)=¢°+€ (Y wir ")+ o(c’)

¢

s+ (s®or @) 4+ 5 )

0—‘
1}

7+ (3% ir®) v 0 (&)

Q—)
u




®

Consideration of Equation (61) and of the above statemernte

leads to the conclusions that

Q ()=1 [etVen, e ¥y
} (o)’
Q‘ (H‘ﬂ)"%[ ‘(s *U ) I+t G.(S -er)]-o- e,-‘(s 'l‘in‘ [I-LC (s “-:- lr

s 1,)% -9

QUsp-b)=%Le L1+ée‘ (s g- or®, zr‘"’b:")}a-

. () y _¢(0> . 2 2 4
serB T {l-éa(su- P d)j ]+ 0¢e?)
t0)

Q(ﬂ&)‘z[ L(ny¢){'il(¢(‘) “)6“Z

- (Yu - (@ 42 ° 3
+-e,L 7 7 {1+¢€(¢)' )0(‘)}]+O(€)

If.these terms are substituted on the left-nand side of Euation
(1.) tre third order eguation after separation becomes
kK Divug G-¥n)]Q, (s %)~ [1-u, (-4 )] Q, (%)
W%, [KQ (8% Y- g%+ @, (Y- 0")]+
-iY,
*n(l) [(Ll..\ +‘.Vl) c‘ /“_ (q_.‘yl)e‘ AJ+[(S(1)—ir(l))(Q&f‘72)e
. () .
+ (%% ir“))(uz ~£72)e_"2'}’_] +L( ¢‘z)-¢‘rwboo )(U_,ri:f’)cf "’4-
) 2); 9 ..cl:’ ‘
+ (g +r”h, )(w, “f") ”J-za.oRs =
4 -y
= 2u, [(b+ib)e™” + (b,-cb )e ™"

+(1,.+L1-L)e.‘°‘/)’+(f,-il;)e.'iz")’] (62)
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WRETe Gy 0y s Wys kWY, A,  and 4, are defined in the
previous section. Note that Z'J‘j, and 7'3)“) are replaced by
y% since the error would not appear until fifth order,
Furthermore, the series (42) has been used for n and the
result for Ré has been taken from ti.e previous section. The
first and second equations remain unchangzed (after the above-
meritioned substitution) from those equations found in the
previous sections. In other words, up to and includin: third
orider terms, r hLas only a third order effect on the Tirst
harmonic,

As alread, mentiored, the first harmonic is contained

s50lcly in the nl term and, thercforc not in the 03 term.

-

[3
With thils urderstanding, veparation of the coefficients of e
in Equation (6-) leads to iLhe followin ;

(2) (2

(‘4*"%) +(w Hﬁ)(s -in +(w3*'"?'3)(f5“3"“%w32“0(4*""‘)

(2)

) ) (a) (z) cz) )
+ (%-cﬁ)(s +¢r )+ (e, -ch)(% +ipr o —zxo(,g-z[‘,)
Separation of the real and imaginar, parts of each

c? the above eyuations leads to the identical results:

)
wn 1-«) S )+ W,y ;6“ +(ﬁ(3+rjb(°)r = R4, 1,.

f.”‘ +ﬁ 5% 4-?3 —(wzrw_, b:)r =2uol,;

Takir : note of the definitions following Esuation (56), these

above relations may be rewritten in the form

(2) (2) (2) (z)
wn +wW 5+ W ?’ *'?5 =2u AL,

@ .
lfnn'”fz' 5" +%?; - w, ¥

(63)
= Z’,Zl.a 1(
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_(2)

S may be eliminated from the above system of

€équations and the following substitutions may be employed

with the final result:

w4~ w0z ]2 ey e - 0 1 % P [y o) Tran, € [ gy 4]
()

If r were set equal to zero note the identity with Equations
¥
(57) and (58). Suppose € were defined as that value of €.
- /
which satisfies Eguation (58) for a ziven ¢ and n' (i.e.,
the value of € which gives a periodic solution). Then, it

is seen that

' ’ P ’ , . ,
[.-wal(h“‘"z 'f‘a]n*[wa 7’2‘?3 Uz_] 2u€ [- h_w[]
Substituzion into Equation (64) has the recsult

() * () 1r =20, (€2 )[ # - 4]

Note that the coefficient of r is always positive and,

2 2 / )
(€-e*" )Ly~ 2, ]
If [,Qr. ’;"2"""2"2{]70 , & positive perturbation

&)

trierefore, r has the same sign a

* . X . .
(€-€_ )70 Zrows since r >» 0 while & regative perturbation
»* . - s
where (E -€ )<O becomes more nesative since r< O. This
means the periodic solution is unctable whenever [ﬂrﬁ'-wz 4]70.

h s A X . * '
If this factor were less than zero, (G -€ )70 means r<

and (€-¢¥ )< O means r » 0. So, the periodic solution
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1s stable whenever [;f -, l). ]<O Note that r = O(C’)
Y‘Va
if Eﬂ’?‘ —Uz 1‘]:0 .
It 1s most useful to invettigate the effect of the
sign of this factor uport the signs of n' and ?". It is

o
necescary to first determine the signs of the coefficients of

4
n' anrd ?: in Ejuation (65); or, in other words, the signs
bt e ffqn Q ! / B ‘ ! ’ ’ i~
of thie ractors Ca), 7’2 -, %] and Lcu, ?z'% q] must be
determired. This is rcadily accomplished if hisker order terms
1 uy are neglected, Noting that K = 1+ o(uy) and
o) C s . .
8 =£[TT+O(U~°) in the definitions followins E-uations (52)
and (30), we find that
<o) 2
W = ¥u, [1reoc g7+ 0 2
_ . ¢o) 2
¢, =-Tu, sn. 3 + o0 (unp?)

7,
@ T o 07 o, [ G- Bt e 0ty

[X-}]
%z = %--t-%’- + Xna 29 (eoq ¢‘°)~4)*' O (wSf)

1a)

W ==Y U, win 47+ OCf)

(o)

+ C)(L&Az)
wz, Kn(O)uQ [[-é-‘boco)JM PIO) I D— ( ‘-2_;:7“)1-] y&}.‘. O(u-og)
=T B o u L5 cor $7-41+0})

W z-447 In” Uy acre {15(0)*‘ O(uoz)

¥, =-Mm'""u, coe i

i

P
I

3
73 s~44r M u, o F + O (u,?)
It 1s ceen that 32 and

Yo' are each ejual to 1/2 + . (uo)

while ‘..e remaining terms are al} of order u Therefore,
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neglecting contributions of order uod

, We finc that

[y, - p]= Yoo [1h e 4974 o (uf)

[wsl %, -7_,'&)2'] = - gln-xnw)uo L ¢u)+_ O (x2)

The first term (which 1s the coefficient of n') is always
nejative while the second term (which is the coefficlent of
¢Z':)") is nezative for zmﬂ<¢m< (®m+ WT ard positive for
Rm+))T < ¢‘°)<Z(m+.)1r.

Note thatv if ‘2wmc':o;62»m)Tr , i'<< U and (or) ?O’I<O
means a displacemert outward (into the rezion of lirear
ctability) while u' 2 0 and (or)?;';o means an inward dis-
pla-ement (into ti.e region of 1li:ear instabilit, )., If
g5 @meNTT 0 < 0 and (or)

r

displacement while n'> O znd (or)

/
20" >0 means an outward
,
2"< O nean: an inward
displacenent,
/

Whenever [1 Y ,é_] >0 ' and ?’ are
rere rif - & ’ o U
chowr by Eyuation (65) to be such that uie Jicplacement from
the reutral lire is outward intc the re:icr. of linear stabilit,
‘ ’ /
see Figure 10a). Whenever [' - ,Z. < n' and
( & ) Ly, -w, L]<o, ot
are cuch that the dicplacement iv inward lntoe he resior of

li:ear instability (cee Fizure 10b). Cf course, wherever

[f(r%_l*wz'jl.]:o » the displacement 1s tanzent to the rieutr:l

llre. Note that althoush this analysis involvinz the directions

of the displucements acssumes that uoa is nexlizgible, the

concluzlions are in agreement with rumerical calculations (in:

which terms of order uo3 are implicitly neglected due to
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approximations in the solutiois for s(o) and ¢(o)).
L.y, -, £
It may be corcluded that whenever [ rfa —9, ;J
is positive, unstable periodic solutions of amplitude C: are
2
found at a distance O(C) from the neutral line in the
rezlon where a small perturbation decays (linear stability).

This 1s shown sclhematicall,

D

in Pigure 10c¢ which is a croce-
sectional plot of the three-dimensional 2: vs. n vs, € plot.
c is plotted as the ordirate while a line riormal to the
%(O) Vs, n(o) neutral lire and lyinz in the €= 0 plane

is plotted as the abelssa., Tre reutral line is suppoced to

[

e pasoing through the origin such that € vo, normal dis-
placemenrt from the neutral line is plovted, An outward dic-

rlacemerit 1 taken to the right znd an inward displaccment 1ic

)

torgern te the left., The curve 1s parabolic, of course, and
giwés vhe locus of points where periodic solutions are founa,
Any solution to the left of (and above) this curve zrows in
arplitude with time while any solution to the rizht of (and
below) decays 1n amplitude with time,

This 1ndicates the possibility of "trigzering"
action since disturbances of certain amplitudes or sreater
srow Wwhille otiiers decay, Althoush a small disturbance may
not grow into a finite size oszillation, a firite dicturbnree
may result in unstable erziie operation.

Wnile 1t has becn 1udicated that disturbances above
a certain amplitude :irow, there hus been o itdicatibn from

thic analysils as to the rinal resime conditlion reached. That




‘ -133-

is, no stable periodic solution of higher amplitude has been
found. This is most likely explained (but not proven here) by
the fact that the stable periodic solution contains shock waves
which were excluded in this analysis. 1In other words, a regime
condltion similar to that found for the case studied in Chapter
IT may be expected.

Whenever'EZLy&(—c%;lgi is negative, it may be concluded
that the stable periodic solutions of amplitude € are found at
a distance O(Cz) from the neutral line in a region the region
where a small perturbation grows (linear instability). Figure
10d shows the parabola which 1is the locus of points where a
periodic solution exists. Any solution to the left of (and below)
this curve grows in amplitude until the amplitude of the periodic
solution 1is reached while any solution to the right of (and above)
this curve decays. If the displacement is inward, the amplitude
decays until the amplitude of the periodic solution is obtained
while 1f the displacement is outward the amplitude of any dis-
turbance decays to zero.‘ In this case, a periodic solution
without shock waves has been found.

Note that the conclusions shown in Figures 10c and 104
are 1n_accordénce with those found by Crocco who, in effect, saild
that for €~0 , these small disturbances grow for inward displace-
ments (to the left) and decay for outward displacements (to the right),

One may wonder about the significance of this sta-
bility analysis being performed in a relatively simple manner,

It 1s well-known that the stablility analysis of a ‘periodic so-

lution satisfying an ordinary differential equation is usually
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a dirricult task to perform (Ref. 18). The stabllity of the
periodic solutlons found for the ordinary differential eqgua-
tion of Appendix A is probably not obtainable, for instance.
Here, however, periodic solutions which satisfy partial dif-
ferential eguations have been found and their stability has
been analyzed without‘much difficulty. The reason for the
simplicity of this analysis 1s that tne ctability criterion
1s related to the boundary conditions and not to the partial
differential eguations. Under the assumptions, all energy
zdditvion or removal occurs at the bounaaries (combustion zone
and nrozzle) and none occurs in the flow field (chamber). The
stabilicy analysis is really performed on periodic sclutions
which catisfy bourdar:y conaiviorns ctated a¢ algebraic re-
1ition; ana the stabilitvy analysis is not pcerrormed on the
soluticn to the partial differential eyuations, This is
clearly seen by tre fact that the tolutions to tne differertial
ejquations are the Riemarn irvariants which do not Zrow or de-
cay 1in megnitude but, of course, remaln invariznt. So, the
stabilit, analysis has been performed for pericdic solutiors
which essentially satisfy clgebraic eyuations. This type of
analysis, therefore, might be expected to be somewhat simpler
than that performed for the solution to an ordinary differential
equation such as that presented in Appendix A.

As a side point of interest, it is noted that an
order of magnitude argzument used with Ejuations (63) shows

—
<

trat s(‘) and r( ) are each of order u,. This arzument as-
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sumes that 2: ’ n(g),,f,., andléale each of order unity or
smaller,

WAVE FORM OF THE OSCILLATIONS

The wave forms of the .table periodic solutions would

be useful to determire. In particular, pressure versus time

r . 4=
H

3

{- - - IR o PN e ~ ~ £ LNV
at rixed space positions are of int

St fince theve are

(’)

-ere

(.’)

ap
most readily found experimentally,

Pressure is determired directly Trom the upeed of
“oun il by means of the isentropic relaticrehip whicn combired

with the verles expansion (2) rields wie reculs
27 4
& 3 -/ 2 3 i
(H-eﬁfc,:af-e Ps)—(l+€.a..+€ a +€ °"3) +O(€)

A bi:omial expansion of tie rignt-hand cide ornd s¢paration ac-

cofdiu; Lo powere in € yields iie followir.z
o =20 a
F ¥

_ 2y + d(¥+1) 2
Pz 3_ az (r_‘)z a'

=&Y + 21_(a’.+!') a, + 24T+
Ps = - 03 (y-1) i 3(7-1)

(66)

Now, p, x, and t have been determired as furictions
of the coordinates and /5 - A Zeneral relationship be-
tweer af and /3 representing a curve which when transformed

bick to X, t  coordinates is a straight lire at constant x
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would be desirable, This ic €asily [lound only for =x = O
(combustion zore) where =8 and for x =1 (rozzle entrance)
where &= | + & . At each of thece locations =¥, =
go that the transformaticn is simplified. Tnc pressure ve. time
wave forms will be plotted at each of trece two locations,

In order to plot tre wave form al % = O, Wwe must cal-
culate P; (?',‘l’”: 1,;) and t; (Zr‘ ) 9)) . Ccmbiration of Ejua-

tions (39), (“8), (55), and (00) yields inc rcsults for Pi
p, = %[K 60-4,(81'2',)6)"" Cod. l')/a:)
=3A[c¢<_2.( +0)+ K cow R(Y, 1-51-6)]

+%(I+K)Cr + 3"/‘6*‘) [ &:H + K coes

2 1
5 ot 2 (5 +% )+ (K+F) cow 2% K ain 5 ain 29 |

Ps =VB[K m.?(ﬁ*s-r A)+ MS(%+A)J

xm-l)iA[

+ KCcu. (32rja+ze+s)+ cu,(ztf,+26 -s)

Y, +R0)+ cod (Z,l/’ +20) +

<

+ et (3%, +25+20) + coe (Yy+ 2s+29))+
2 )) 1+
+ K leew (38 +35+20)+ e (W + 5 +20

+(I+K)Cr[K tod Cs+7r/{,)+ Cod Z'Jpjj*'
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+ X(q?-l) [’f [cu 3 (s+ %)+3c¢¢(s+y,,)]+

2
+Z5 R o Yo + cow (344 25) + coe (V4 25)]
+ 3K [2 coe (50 450+ con (3% +5)+ cow (3 -5)]

+ g oo 34+ 3 con z’f"]j (€7)

It is seen that there are corrections of the order 632 to
the average pressure and or 1y part of this correction ig
propcertional tc the factor Cr'

Equations (10), (3%), (4) and (50) yields tic result-
for ti(y,,?j) as followu

t = RYe
o S(I-u:)
) \Z t1
t|=~£’§—!-LK H-un[' Ni=%e 7 a [colz’;é_\".(—.o'- 5-

cor (s0Y)-ide S i (757 ) Lt 3 4 ) - 5
- (Fg; )i 9

b= B (v B [(3) iy e, -
+g/21(:‘+:° s 5 [y + (:u) f”c:zs+

I+u Y+l o I dm 25 -ain s
+ l-u: KsS s [(wuo)l + (“%)Z] /7 -CoL S )
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ey J'-H
(g BT S L + (,,u,,J)}

+ 2L {(.—'-— 2 ’54 ain 2 (Y *9)4- AKMZ(V%-s-re)
4 |+U.d S(I-K)z

s )‘ A uin 2O - rrﬁr‘)a AR s 2(6+s5)
o

XH [(4:&) G- u)_](lf-u [‘+ ot Y- M(%-S)]

/- coa $
-K 1*4o _cad s (¥, +S))
I-u, [‘ l-;&:s J
2
K ] ¥+ -
* 75 Lag-s i) (,u ](’ - 2 (Fp+s) ZS)

+'/'f§ [%:; (t-u (M ¢ Zr/jd l)j

+ |-'Co-¢ZS [V}A <¢o¢2.(zf/i,+9)-w<,2(?//5+9*5)

- coq_ze+c,o¢.2(5+e))+ %(w 2%-&4,;2(%1-5)

_.H-c.oq_Zs)-f- %}S_ Yy s (Z/%*'S)‘M 2;;}5'

- i (29/{, +35)+ . 2(Yy+ 5 )- aum 5+,4'4n_35-m25)

+_"~_(.M_ zi,é—m(a,, s) MZ( +S)+Am..(2 +5)
45 -

b dine RS - 2 den S)j

(68)
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A plot of‘(l-l»ep, )) Vs, to(g‘%)‘) zives a

first order approximation to the wave form at the combustion
zone. Since the zero order pressure term is constant with time,
it is not neéessam’ to include the first order correction QC'
for time. Tnhe difference between evaluating Cﬁ at to and
at (to + et' ) is of order € and, therefore, neslirible
for the purpose of a rirst order approximation. A secord
order approximation to the wave form at the combustion zone ic ‘
. 3
given by a plot of IfCP,(’;,y)-I-C Py (%,'If,)) vs.@o(V,};)-l-ez‘(%.%))
while a third order approximation is given by a plot of
2 )
(t+ep,(‘¢,1/)*eﬁ(}},y)'«eﬁ,(ﬂf))vs.(to (P,V)-f et ()it ¢ ( ,%)). ‘
The prcsiure ~vave form at the riozzle entrance is
caleulated in a similur fashion., Eruatiorz (39), (48), (55),
and (66) are used to evaluate Pi (}/jafs, 475) with Lne
following results: |
Y
= 7(K+1)co (54¢%%)
= Y(K+)A cor 2 (¥ +5+0)+

+ I(¥3122§K+')z [e.«_ 2 (9,’4*5)4-114- % (k+1) G,
P; = ¥ (K+1) B coe 3 (%+S+A)+

+ L;"_') (K-H)z {A [co-d.. (3% +3s+20)+

+ cow (Ys+ s+29)]+c,, cow (¥ +s)}.,.

Y (¥+i1)(K+i
Y 3v4 )[“"3( *5)*3“4—‘%”)] (69)
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Egquations (12), (35), (+1), and (50) vicld the

following rcculis Tor ti(‘I}a + S, zf)/’

[ 2 Ys
0T hru, * 5 Tk

= - . _ i
t = T Lre K H,“aJCo-(. (S+'da)

EK I-Uo l#“]
I+U, (-« {Cod. (se¥s)+ cow s- coe(Ysvr2s )- I,
(1~m:) (+«,

l—uo

v Lo Yyt cod 5. ced (St¥s) - }

+ 3 {[K(, u) ,m)],wz_ (5+¥s)- %s}

Il-leg

t_ = ——_, r*l "
Z 2 3¢ [“' l+u JC + 34, (,C;u)‘

m) [[(l u,) K= (i+u )J[(,‘ib (———)_J[”'m”m“—]}

+ 3-4 I+ I-“L [ Kﬁ
/¢ § (+«, (H-Ko)z (- u)J l-aus -

0’*')(3 L& Stuy . J-u, , T+
(:ru )‘ (/-Lj)hJM [4(‘ U- ) (I+“) J

S+ i r)u, k !
- + 5 [ 2 1 ¥+l 3 |
3Z 2(‘_“03) 2 [ 4 l-‘u.‘ l"‘b: J“' -—y——'- __L..

F4 I+
)

{ 3 A (‘_‘.%)2. +(l-¢_s)z_]cr +

3-¥ i-Uo XY+l [K + ire S
M /€ I+ Yy s (H-Lg)l (l-ud)z I-Cod S +
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+ ke kg 0‘+l [ A RS- gl 3
l-u, (u»u.)‘ (“,, /-~ coL S

3-3’ Il J-¥ 2 3.7 x+ -r ¢,
M [4(4—u2) (l-uo)’JK + 3z [4(,_‘:5)“"0‘%?).’]]—3&

+n A {L‘a“_‘g [&M, R (9+s+¢,fp)-c¢4,z(e.-25+ff,)1

l-coe 25

+‘L2‘2[u¢z(91{,+9)-co4.2(ﬁ+9+5)]j+

+h

4(1-ecou25) {

Lo feot & (Fs+3)~ cot 2¥p ]+

+ "'T“e[mz{r/é coe 2 (Y- 5)}} ‘—‘ziiE«‘m(asf,zij)

4:(: o 25)

- aire R (Ys+5)-ain. (RYs+ 55) 4 wim R (%rz.s)]+

l*l-c.

+ [,w.,(z +5)-_ain_ Ry -win (2 +3s)+mz(ﬁa+s)]?

r l-w, . o - _ .
+;::<,-w>f o P £y +5)- i @l 3)- aim 2Cihe25)

4.,4441_(29),51'35)]-‘- I"'uoE)uﬂ_Z% M(Z S)-

- ain 2 (9,{,+s)+m(29/’,+s)]}_ nAlesc 20-coc(s+0)]

t-coq 25
2 . nk[dns-sin3srknzs] rolean s-win 23]
+ 43 (- cow 23) 4S5 (1-eseks)
4-..§1'LA[:“L H.ujco.‘ Z(V +£—)+$)+-’r/42 )‘Mz(éi»S)
’—

—<o+'u°)= v 26 4 L'(H‘%)z + c:-:,)z i z(9+s+ga)}




®

X-O-‘ K I Z('I - (y S

I-cod S

+(I:‘_) [C- u.)K..(Hu)][(w)z (‘u) mz‘ﬁg;‘f:z?ys)

+ 0’;-! (l;;(,)[i“r_<r ’)KJ[('“._Eu:)" +<;~‘__§_5‘] cot (2 Y5 +8)- coe 2(fs+5)

/-tod S

3“ ’ﬁ-l I~,
/6 [(H-u)z Cl-u )2.] {H-u. + K “'ao [MZ

+ Coe - awcﬂfa+s)] “é%5}+

(¥e1)(3-5)(3-%, , Ry
4-;)((‘.3-:0);?145)!( [4ire (R8s +35)- ain 2 (Ya+5)]

CF)(3-7)(3+u0) K . .
+ $(ric )7 5 [M 2(9’;*5)—M(2%+5)J

+ 3 4
[4(:-:.. *a- u)’] 3 [M 2k 8 +3)-ain 25_]
2+] 3 ] wn 2(¥rs)
4(l-u. l+u.)’ 4s
L {3-r Fri T RKu, e L 2 (Y,
+]3_;.— [T /-7‘4-0 B ;: I+ * tu2]+ . }‘“ +)

(70)
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A first order approximation to the pressure wave
form at the nozzle entrance is given by a plot of (u-eP‘ (s+i/{,,3$) )
vs. £ (s+ ?r’/,,)l’,) . A second order approximation 1s given by a
plot of €+€H(s+1ﬁg,},’s) + e'p (3,_%)%)) Vs,
(t,Cs+%,8) + €t (5+8h,$s) ) while a third order approxima-
tion is given by a plot of (1+ep (S+ 4,4 ) + p (535, %)
+Cpy (s, $)) v (b (v PB)+ o, (s Y, 3 0+ €4 548,30,

NUMERICAL EXAMPLE:

In any calculation based on these results it 1s neces
sary to speéify the rate function -FCQJ. This 1s done by stating
tre values.of the coefficients in a Taylor series expanslon about
the steady-state value, For an approximation with error of fourth
order in the speed of sound perturbation, only the first three
coefficients N(E %h), M , and L, need be stated (See Ap-
pendix E). These coefficients are readily calculated for any
rate function which 1s analytilc.

For the purpose of numerical example, the function is
choser to be

f= p’w
where /ﬁL is some constuent. The 1sentropic relatlionship says

that
UM

¥-i
f=a
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Therefore, it 1s found that

4 df. 2y 4
NE 'F J& a=l - r‘l

d°f 2y M
MEZ‘T%J“ /a:z e ( o
_4 L JF
L= f 41 ‘§‘ zr—l jF— )( ¥

=N
tr

Since n

il

2 , it 1s immediately seen that n and M are

4
identical. M is the irteraction index as defined by Crocco (Ref. 1).

According to experimental results (Ref. 2), the range

o)
ot practicnl irterest ic A< & . The minimum value of W pos-
ch vn . . - ] . J+1
siblc f'or unstable cperation was found by Crocco to te W If

(0)
Y=12 , this minimum value 1z W =.46,

In the calculations, =12 was ta<en for nll caves.
Three cases were excmined or the mean [low Mich number: &=.]1,
.2, and .3. PFurthermore, three modes of c¢scillation were eximined:
the furizmental mcde ( A=1 ), the second narmonic mode (A=R),
and the third narmonic mode ,2 3 ). The interer m wat faken
eyqual to zero in all calculatioric,

(o) ¢o) co) .
s ., ¢ , and ?; were calculated for various

[
to) in the range 0.5 €2 € 10,0 by means ol Equations (37)

n
and (38). The results are double-valued since there is a cholce
of a plus or minus sign i thete eguations. Figures 11, 12, and
13 chow the results for the case f= 1 (fundamental .mode) and

~

= ,2, If the integer m wWere taken as nonzero in these
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to) ‘.)
calculations, there would be no change in the § vVs. M curve
[
(Fig. 11), the ¢”vs. 71.“) curve (Fig. 12) would be translated

Co) to)
vertically with no distortion, and the @ vs. W curve (Fig. 13)

would be translated vertically and distorted somewhat. The
minimum value of 71-“) would remain unchanged and the shapes of
fhe curves would still be "parabolic-like."

At a value of n greater thar the mirimum value neutral
oscillation is possible at two frequencies: one freguency greater
Lhan thie natural resonant frequency ( § > 2T ) and the other
frequency less than the natural resonant frejuency (§< RM ).
The I'requenc, of oscillatiorn is dependent upon the characteristic
time of the combustion process E: (M.¢ ). If the time of
combustion increases so does the period of the oscillation and,
therefore, the frequency decreaces. If ?O"O)?.l (¢“’>TT) , we
find §% R7  while ir Z‘;m<1 (¢‘°)< ) , we have

{ <o)

S°’>2. T . The two different brancres of the curves of 8§ vs,

h“) and ¢“’ Vs, )'L(°) are marked in Fizurec 11 and
<o) (o)

12 as either ?‘; >1 or ?o' <] in order to distinguish

between them.

The parameters /4,8) and, C', which appear in the se.-
ond order contribution to the wave form may be calculated as
Indicated by Equations ( 7a) and (47b). 1liote that there is no

Co)
change in the final results if the sizn of A ) is changed

provided that z-—ra—r— i1s added to @ (m °’) . These three par-

(o) ¢ to) o, o)
ameters depend upon hc, = .)(7'L°) and ﬁ )(h, ° ) .




s, |

Flgures 14, 15, and 16 show the case Ww=.,2 and
/[=]1 (fundamental mode). Figure 14 shows that,A tends to plus
infinity as ‘n“) tends towards 4“ . For ?;“Ll, A(Yl(.')) re-

o) [75)
mains positive while for ?; >1, A(M) becomes negative for
hizher values of 7f” . ,4(&“) is of order unity for a wide
range, 0.6 <nm< 10.0 and above, Therefore, since the co-
efficient of the second harmonlc term in the wave form is pro-
portional to €2A » this coefficient is of order Cz .
(Note that this applies to the wave form in characteristic co-
ordinates and therc are additional second harmonic contributions
resulting from the transformation to space and time coordinatles).

The phase term @ 1is plotted verses M in Figure 15
and 1s seen to change rapidly as nf”~——, %%; . The wild
behavior of & for ?:(O)>.1- occurs where A=0 (see
Figure 14) so that 1t does not result in any wild behavior in
the wave form calculations. For larger values of hm, & in-
creases for ?a'“il and decreases for ’c:"°)>_1 .

The factor CL which 1s the coefficient of the
correction to the mean flow condition becomes infinite as 7{0)
shrinks to 1ts minimum value. CL 1s nezative for 2;%11 and
positive for ?;“Lj_ . Its absolute value decreases as h“) be-
comes larger in both cases.

The B and A terms are calculated by means

of Ejuations (54%), These are parameters In the third order

s .
contribution to the wave form; in particular, €8 is the coef-

ficlent of the third harmonic term in the wave form and 34 1is
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. Note that there 1s nc chanze in the wave fecrr 1if

f
N
¥
3
5
;‘\
t
M

3

3
D
7]
b

-n of B is charnged proviizd that $ %‘ is added to
. co)

A . These two parameters depend upon N, s“", @, A,Q,

and Cv .

{o)
Figures 17 and 13 show the curves of B ve., N

<o)

and A vs, N for the case W= .2 and =1 (furdamental

UiL*J&). It is cecn from Figure 17 that B becomes Infinite as
o)

o, % . Tils parameter is nezative for ?‘; >1 and

positive for '{"21. Mote that B is usually comewhat larger
than A suen that €A and e’B  could become comparable if
< were not too ctmall., Tnisc would mean thar the second and
third harmonic components in the wave form would be comparable
in amplitude (in characteristic coordinates).

The A term becomes larze as n‘°3-—>%+7' . For

?‘0) . ‘0, X
> 1 » A decrsases morotordically ss n increas

3

Q

A pes viodiloa Ll = e

. (o) R <°)
and eventually becomes negative for larzer K while for ?;' <1

-

A increases mor.ovioniczlly, with TL“) and vecomes pocitlve Por
(o)
larzer n .
The factor D l1e talculated by means of Eguation
(5¢) and is seen to depend upor R, ¢‘°), 5“’, A , 6
and Cr . D i1z the faclor in the relationchips between
dirplacement from tre rneutrcl line in a T ve.n plot and
tre amplitude parameter € ., A pcsitive D indicatez an out-
ward dizplacement and a nezative D indicates an inward dis-
placenmer.t,

The recult for he #s-2 and L=1 case is shown
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a, 9 0)
in Figure 19. For both ?; >1 and ?;, <1 s D becomes

infinite as M‘%—, %i‘r—'-

from this minimum value and eventually becomes negative. (For

(o)
and decreases as M increases

?a“)>i » 1t becomes positive again at still larger n¢® ).
The change in sign occurs at approximately 7ﬁ°) 2.25 for f:‘°)>.1
and )‘L“)= 2,75 for ’c\;“)é 1 .

The results for all other combinations of & and L are
qualitatively similar; i.e., they may be described in the same
manner that the ﬁ= 1, W= .2 case has been described here,

Note that positive D implies unstable periodic
solutlons while nezative D implies stable periodic solutions.

In the range of values of MW of practical interest (M< 2.0 a.-
cording to Ref. 2), only unstable solutions were found for all
cases studied.

The determination of the wave form would only be of
interest for stable solutions (D = 0). Wave form calculations
are presented herein for the case: X=1.2, w=Cc.2, €= 0,1,

(o)

L= 1, and n '=4,0, At this value of 71“), the periodic so-

Iution 1s stable for both points 'quél and 2;(°L. . A fixed
value of € was chosen such that displacement is not the same
for all points. Figures 20 and 21 show the wave forms at the
nozzle while Figures 22 and 23 apply at the injector. Each
flgure shows three approximations to the wave form as explained

in the previous section: first order, second order, and third

order approximations. The wave form over the time beriod of
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oscillation 1s indicated.

Comparison of Figure 20 with Flgure 21 (or Figure 22

with 23) shows significant difference between the wave form for

<o)

(C:, >l (below-resonant frequency) and ?;(°’<1 (above-resonant
frequency). For above-resonant oscillations, the mean-pressure
correction 1is positive and the positive peak becomes sharper.
On the other hand, for below-resonant oscillations, the mean-
pressure correction 1s negative and the negative peak becomes
sharper.

A very 1important factor in the wave form is the co-
ordinate correction which is related to the nonlinearity of
the characteristic curves. It is seen that the correctionCt;,
1s governed by a norhomogeneous wave equatlon with a periodic
forcing function. The harmonic oscillator anology informs us
that a phase shift of 180° occurs whenever the forcingz function
1s changed from an above-resonant frequency to a below-resonant
frequency. The result in our wave phenomenon 1s not this sim-
ple, but there is a chift in phase of Gt‘, exXplaining the dif-
ferernce in the location of the sharper peak for above and be-
low resonant frequencies.

Comparison of Flgure 20 with Figure 22 (or Figure 21
with 23) shows the wave rorm is essentially the same at both
chamber ends implying that the wave form is simllar throughout
the chamber. The amplitudes are greater at the nozzle end than
at the injector end since at the nozzle there is no phase or

delay in the reflection but there is a phase in reflection at




®

the injector end. This phase in reflection 1s related to the
time-lag effect. Note that if a finite length nozzle were con-
sidered there would be a phase in reflection at the nozzle entrance
related to the wave travel time within the convergent portion of
the rozzle,

Figure 20, 21, 22, and 23 show a very slight difference
between the second and third order approximations implying con-
vergence for small values of € . TFor lar;er values of € , the
difference between the three approximations is significant. Also
for larger values of € , a double-valued solution occurs at
the sharper peak indicating shock formation. This is strikingly
dirferent from the case of shock formation for a simple wave
which orizinally had a sinusoidal wave form. In that case,
shock formation is well-known to begin at the inflectiion point
of the compressive portion rathcr than at the peaks. This seems
to be a result of off-resonant oscillation.

The gualitative results for the higher mode of oscil-
lation LZ=Z) are identlcal. The only important difference in-

velves, of course, the period of oscillation.
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CHAPTER 1V
DISCUSSION OF RESULTS
ANALYTICAL RESULTS

An 1nportant result of the analyses of Chapter II
and III is the indication of the importance of the character-
istlc time of the combustion process. In Chapter II the com-
bustion time 1s negligible compared to the wave travel time in
the chamber such that the energy feedback from the combustion
process to the wave phenomenon is instantaneous. 'n the other
hand, in Chapter III, the combustion time and the wave travel
time are of the same order of mazgnitude such that the ENergy
feedback 1s not instantaneous but occurs over a perlod of time
of the order of the wave travel time,

Instabllity of the steady-state operation occurs irn
both cases 1f the feedback of ener:y 1s sufficiently strong,
In Chapter III, the further the ratio of period of oscillation
(approximately wave travel time) to combustion time (time-lag)
1s from the optimum value (2), the greater must be the feed-
back (or, in other words, n must be zreater) in order to
produce instability. At the optimum value of this time ratio,
énergy is fedback in phase with the pressure oscillation.

Away from this optimum time ratio the phase between pressure

and energy addition or feedback becomes nonzero such that the
absolute value of the energy addition must become larser. 1In
Chapter II the energy addition is instantaneous so that the phase
is always zero and thereby optimum for instability,.

Whenever the combustion time and the wave travel time
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are of the same order the freguency of the oscillation is
different from the natural frequency of the chamber by an amount
of order u,- Furthermore, unstable operation 1s possible over
a certain chamber-length ranze such that upper and lowqr length
stability limits exist, Whenever the combustion time 1is reg-
llgible compared to the wave travel time, the frequency of os-
cillatlon 1s the natural resonant freguency of the chamber and
instabillity 1s possible at all chamber lengths provided that
the energy feedback 1s sufficiently strong. Note, however,
that the assumptions of concentrated combustion zone at chamber
and short nozzle become poorer as chamber lenzgth decreases., 1In
fact, as more of the combustion occurs nearer the pressure node
(at “he chamber center for the fundamental mode) the operation
becomes more stable., The result 1s that in practical caces a
lower length limit exists so that the only claim made herein
for instantaneous combustion processes is that no upper lernzth
limit exists.

Stable periodic solutions of finite amplitude without
shock waves could only be found if thre phasing between energy
addition and pressure were cufficiently far from zero. When-
ever the phasing were too close to zero the periodic solutions
without shock waves (Chapter III) were found to be unstable,

It may be argued that the only stable periodic solutions in
this case will contain shock waves. 1If the amplitude is in-
creased above the value for the unstable periodic solution,

this amplitude will continue to increase. If a stable periodic
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solution exists, this growth must be stopped. This gzrowth can
only be stopped by the app€arance of one or more additioral
dissipative mechanisms since tre nozzle 1s not sufficient in

this case to prevent the growth, With growth of amplitude,

there is a distortior of the wave form. With sufficlent arowth
and distortion, shodss are fomed providiag the additional dissipative
mechanism,

Note that the above statements concerningy the relatior-
ship between phase and solutions with or without shock waves
result from an analysis wherein the phacing effecis appear due
to the Crocco time-lag effect. It ls nol clear that tlese state-
ments can be generalized to iriclude other types of combustion
phenocmena where phasinz is present. Tie stetements are in agree-
meﬁt with the results of tre analysis of Chapter IT in which the
limiting care of zero phase it treated. 1In tlat cace all finite-~
amplitude oscillations contaired shocks*, It is felt, therefore,
that this result is valid even for combustion models not based
on the Crocco time-lag postulate,

Even if the phasiry between energy zddition and pres
sure 1is far from zero, the arplitude must riot be *“oo large 1ir
rio shocks are to form., If the amplitude is :o larze that cevere
distortion of the cirusoidal wave form occurs, shock waves may

form. So, solutions witrout “rocks are found or.ly in a small

* Shocks were assumed to exist in that analyuis; however,
thelr azmplitudes were left to be determined. If solutions
with no shocks were posslble, zero shock amplitude solutions
could have been fourd.
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region in the 7:' », n plane, This region is adjacent to the
<o) co) co)

?; vs., M curve but far from the minimum value of 2 ~(point

of zero phase between energy addition and pressure). The width

of this region is of order Ez wherc Z 1s the upper bound on

the value of the amplitudc parameter such that shocks do not

form.

A very Important result is the relationship between
the foreing function of thne instabilily and the wave form 1n
the chamber. This is readily seen from the results of Chapter
II where the naturc of the forcing function is described (to
surricient accuracy for our purposes) by the values of the
parameters & and 5-. Here, we see that the amplitude 1g direct-
ly proportiorual to (w-1) while the coefficients of x and t ap-
pearing in the exponentials are each directly proportional to

S- . Therefore, a knowledze of the forcing function (i.e.,
“nowledzge ol a:arulé.) leads vo a prediction of the amplitude
o' the oscillation and the chape of the wave lorm.

The interesting possibility here 1s that the ampli-
tude and wave chape may be determined experimentally and the
theory may be used to calculate an e and a J-. In this way,
something can be learned about the nature of the forcing func-
tion, Tnis point will be exemplified later when the Frinceton
zas rocket experiments are discussed.

This same type of relationship nhas been found in

Chapter III where the wave form of the stable periodic solu-
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tions 1is found to depend upon the combustion parameters#* ?r s

n, M, and L. It is seen that $,€,A 6,Cp, B, and A

depend upon these parameters. The last five guantities depend
ELCQ to) .

upon the zero order values, and R " while the first two

o
o)
and n*? but

quantities € and S depend not only on ?;
also upon the displacement from the neutral line or, in other
words, upon & and »

This relationship between the combustion parameters
and the wave form in Chapter III is extremely complex so that
one probably can not determine the parameters by experimental
observation of the wave form in this case as was sugpested for
the case of Chapter II. Even if the relationship were not so
complex, there are still two other serious difficulties. The
first 1s that stable periodic solutions are found only outside

N .
the rang

o

of n-values of practical interest. Stable solutions
where wave form calculations are meaninzful occur for n>» 2.0
while according to Ref. 2, n € 2,) for practical cases, OQther
injector-propellant combinations not yet tested may provide
hizher values of n, but this 1s not probable., The second
serious difficulty 1s that n, M, and L appear in the re-
lationships in a specific manner, In particular, the descrip-
tion of the combustion process is obtained by means of the
Crocco time-lag postulate. As already mentioned, this pos-

tulate has been verified experimentally for the lirearized

* Other parameters such ac K', uo, and the mode of oscilla-
tion affect the wave form, alsd.
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treatment (Ref. 1 and 2). The extension of thls postulate to
the nonlinear case, however, has not been verlified. No efforts
have been made in this direction so that we are not certain
that n, 2: > M, and L appear in the nonlinear terms 1in a
physically accurate manner,

Tre possibility of "triggering action" has been in-
dicated by the instability of the periodic solutions in certain
ranges of the ?: V8. n plane. Whenever the periodic solution
is unstable, an oscillation greater in amplitude than that of
the periodic solution (by any amount, no matter how small) grows
in amplitude until another disslpative mechanism precents itself.
The implication is that if a disturbance is induced with an
amplitude greater than that of the periodic solution, this dis-
turbance grows to some rezime state such that unstable cperation
of the engine results. If the amplitude of the induced disturb-
ance 1is below this critical value, the amplitude decays to zero
and steady-state operation of the engire 1s restored. This
critical value of the amplltude varies as the square root of the
displacement from the neutral line 1in a g: » h plane, (This
1s an asymptotic relationship and may only be applied in a small
reglon near the neutral line,)

The results for all cases where numerical cal:zulations
were performed indicate %{hat "triggerins" action is pos:ible ir
the approximate range n € 2,0 which is the range of ph,si~ul
interest. It 1is noted with cautlon, however, that these results

are based upon the nonlinear extension of the time-laz theory
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and this extension has not been verifled experimentally. The
author feels, however, that the results Jjustify the claim that
"triggering" action 1s a very likely possibility in the longi-
tudinal mode whenever a phase exists between energy addition
oscillation and pressure oscillation. In the zero-phase case
studied in Chapter II, no "triggeringz" action was possible.
Finite amplitude waves occurred only for values of w which were
in a range that produced instability of the steady-state oper-
ation to small perturbations (see, alco, Appendix c). In

t

Chapter III, the possibility of "triggering’

@ go

of zero phase (M = 4y ) is seemily indicated since D 1s posi-

action at the point

tive there. This would contradict the results of Chapter II ex-
cept that accurate interpretatiorn of the results of Chapter III
leads to agreement rather than contradiction.

Congider a constant normal dispiacement at each point
along the ncutral line, This means €zl) is constant and
finite. Since D becomes positive infinite as the zero-phase
point (nu): ??l Yis approached, € must vanish, This would seem
to mean that at this point any disturbance above the minimum
amplitude €=0 would grow in amplitude and, therefore, "trigger-
ing" action is extremely easy. In fact, it is easier at this
zero-phase point than anywhere else where & >0. On the con-
trary, €E=0 does not mean zero amplitude for the complete
wave form but only zero amplitude for the lowest harmonic 1n
that wave form. In order to have zero amplitude of the wave

form, the amplitudes of all of tre harmonics 1in that wave form
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must be zero., If any of the amplitudes CQA, Caa, etc. are
different from zero, the amplitude of the wave form is different
from zero.

Note that, for a constant normal displacement, € 1is
inversely proportional to the square root of D and the ampli-
tude of the higher harmonics are directly proportional to A/D,
B/DB/E, etc. In addition, note that both numerator and deriomi-
nator become irfinite at the zero-phase point as shown by Figure
14, 17, and 19. The numecrical results indicate that these amp-

litude factors do not go to zero as tle zero-phase point is ap-

@}
[

proached but instead increase in magnitude, In fact, B/D3
tends towards infinity as shown by Fipure 24.% Hopefully, an

o) +
asymptotic analysis (in which the limit as M zoes to Ay
isAconsidered) would show that the amplitude of one or more of
thie nigher harmonict becomes infinite at this point. This would
imply that the ampllitude of the disturbance necessary to grow
in amplitude rather than decay would be infinite. '"Triggerinz",
therefore, would be impossible at this zero-phase point and

agreement with the result of the arnalysis of Chapter II i1s self-

evident.

* In Figure 24, the absolute value is plotted. The reason
that lowe¥2zl becomes infinite at approximately m**? =2  is
that the displacement 1s changling from outward to inward as
n increases such that D is passing through zero. B re-
mains finite, however. Since the displacenent from the
neutral lire is equol to 8€* plus terms of order ¢€? , this
means that the third order terms are importart in determininz
the relationship between displacement and amplitude.
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This asymptotic analysis would present a tedium com-~
parable to that of the analysis of Chapter III and, for this
reason, 1t has not been performed, Instead, it is assumed
that the numerical results for points near the minimum value
of n‘°’(=-46;!0- I-"‘-Z) give reliable 1nf‘or-mation concerning
the asymptotic bechavior. It i1sclaimed, therefore, that at least
the amplitude of the third narmonic €"B tends towards in-
finity even though the amplitude of the first harmonic € tends
towards zero. Furthermore, on this basis, the minimum amplitude
of the disturbance necessary to "trigger" unstable operatior. of
the enzine must tend towards infinity and, 1in the limit, "irig-
gering" is not possible.

Triece conclusions concerning the "triggerirg" aclion
aprly only to situations where there exists a "continulty " be-

tween the linesr ~ng ronlinear mechanicms of the erer

ciod Y
rie ci's, ad

dition to the oscillation. The essential physics of the re-
sponse of the combustion process to various pressure and velocity
disturbances, whether infinitesimal or firite, must be c¢imilar.
An example of a "discontinuity" in this mechaniem would be :the
droplet shattering phenomenon whereby velocity disturbances

lar_er than a certain magnitude would cause irertial f'orcez to
become greater than surface tension forces reculting in the

break-up or shattering of droplcts into smaller droplets. The
vaporization rates and burning rates increase causing an in-

crease of the energy fedback to the oscillations. If the drop-

lets are extremely =mull afier shatteriry tne feedback of en-
J 5:
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ergy to the oscillation 1s essentially instantaneous and there
1s zero-phase. Under circumstances such as the one outlined
here, "triggering" action may be possible at the zero-phase
point.

It 1is noteworthy that if there 1s a "continulty" be-
tween the linear and nonlinear mechanisms of energ; addition to
the oscillations, there is a "continuity" in the results of a
linear and a non-linear analysis. As € —> (0, the nonlinear
results of Chapter III and the linear results of Ref., 1 agree.
Furthemmore, the same stability limits are predicted by the
nonlinear analysis of Chapter II and the linear analysis of
Appendix C.

The importarnce of the boundary conditions in the de-
termination of the stability criterion cannot be overemphasized.
Growth of the amplitude of oscillation occurs whenever more
eriergy 1s added by the combustion process than is withdrawn by
the nozzle., Decay of the amplitude occurs whenever less energy
1s added by the combustlion process than is subtracted at the
nozzle. The nozzle 1s extremely important in determining the
stability criterion. In fact, 1t is Just as important as the
combustion process and therefore its effects must be glven an
accurate description in any accurate analysis of the combustion
instability phenomerion,

Crocco has developed a description of the nozzle ef-
fects under oscillating conditions, but the linearized treat-

ment applies only at very small amplitudes (see Ref. 1). At
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larger amplitudes, the pProper nozzle boundary condition is
known only in the limiting case of zero-length convergent por-
tion of nozzle. This limiting case has been assumed here,
(Note that zero length really means negligible length compared
to chamber length.)

Although a limiting case has been cornsidered, the
physics of that situation has accurately been described. Vari-
Oous other workers in the field have refused to consider limiting
cases and, finding themselves without any knowledge of the proper

boundary conditions, have been forced to make unjustifiable =nd

(to this author's contention) physically unreasonable assumptions
concerning the chamber flow field. In Reference 19, a sinusoidal
pressure variation with time at a point slightly upstream from
thé nrozzle throat was assumed while in Reference 20, a shock
wave was assumed to have a constant pressure ratio with time
during its travel down the chamber. In Reference 21, which
contained an analysis of the transverse mode of instability,

the longitudinal gradlients were assumed to be zero. The need
for simplification in treating these problems is clearly under-
stood; however, it 1s hoped that any simplifying assumptions
are proven reasonable before they are applied. Satlsfactory
proof should at least consist of a comparison of the results

of the analysis based upon the simplifying assumptions with

the results of an analysis based only upon assumptions which

are widely-accepted as reasonable. This comparison- could only

be made for special limiting cases (otherwise there is no use




-162-

for the questionable analysis if a clearly-reasonable analysis
could‘be performed for a general case).

In Chapter II, where an oscillation at the natural
resonant freguency of the chamber was studied, a second order
analysls was necessary to obtain a first order result. This
is common procedure in the analysis of nonlinear ordinary dif-
ferential equations which have periodic forcing functions at
the natural freyuency (see Ref, 18). This proceaure was also
used in Ref. 11 and 12 where shock-wave oscillations in a one-
dimencional chamber closed at both ends were treated. In
Chapter III, wherc off-reconant oscillations were consldered,
1t was not nececear, to go to a higher order snalysis to zet
the results c¢f z given order, This 1s zommor procedure in
ronlircar ordinary differential ejuatiors which have forciliyg
functions at othier than the natural frequcney., lote that the

severning ejuations for » and t  are inhonmozer.eous wave

equatlions which are analoguous to ordirar; Jdifferentlial e uations

with forcing functiors,
The amplitude of the resonar.. soluticn of Chapter II
was directly proportioral to the displacement from the neutral

stabllity line (@ - 1). The amplitude of the off-resonant

solution of Chapter III was directly propcrtioral to the square

root of the displacement from “he neutral stabllity lire (rep-

V4
resented by M’ and ft ).

"Sawtooth" wave forms were obtaired in Ref, 11 and 12

and "rearly sawtooth" wave:s were found in Chapter II irdicating
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that "sawtooth" waves are probably the natural types resulting
from the wave prienomena, Ref, 17 discusses how sawtooth waves
result asymptotically from otter wave forms so that it is not
surprising to obtain these results. The effect of the combus -
tion process seems to be to provide small corrections on this
Sawtooth wave form as shown by Figure 7.

In Cuapter III, stable wave forms without shock waves

o) 10)

were obralned only at values of a'and . yuite far from the
Zero phasc point (far from resonant frequency) and only ror
ver, small displacement from the neutral line (€ small). Tue
wave forms were similar throughout the chamber. ‘here were sz~
nificant differences in tre wave forms ror above-resonant and
below-resonant cases as €splained in Craprer III and indicatedg

s ~- - . oy I > I .
in Figures 20, 21, 22, and 23. The values of m  for which stable

o~ 1.

>C Loo large to bLe in

-

ver, to

[
)]

¢

wave forms are obtaired seem, how
the range of practical interest,
It is not possible to compare the results of these
analyses with other analyses concerned with the ronlirear as-
pects of combustion iristability since othrer theories involve
the determination of flow conditions baged on certain initial

conditions (see Ref. 19, 29, and 21). Numerical integration is

e

usually required o thai results are rot readily neerpreted,

If those analyses would sleld periodic solutions it would occur
only alter an infinite time, Here, on the other hand, periodic
solutlons have been found by analytic means.,

Comparisons can be made with WOrks on related phe-
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nomena, however, The longitudinal oscillatidns with shocks
studied by Chu (Ref. 11 and 12) are comparable to the oscilla-
tions studied in Cnapter II. The similarity in the wave forms
has already been mentioned. 1In a sense, Chu's problem is a
limiting case of our analysis if the mean flow goes to zero

and the injector end and nozzle end become solid walls. This

is not expres:tible explicitly since as the mean flow goes to zero
in our case, the energy addition also goes to zero and there

can be no periodic oscillation. An important difference results
due to the presence of the nozzle which removes ernergy from

the oscillation. 1In Chu's case where there was no nozzle,

the energy addition at one chamber end is of order €2 (where €&
1s the amplitude of the oscillation). 1In our case with a noz-
zle, both the energ, addition due to combustion and the energy
removzl by the nozzle are of order € , but their difference
(net energy addition) 1s of order €:2 .

The results of Chapter III are similar to the results
of Maslen and Moore (Ref. 9 and 10 ) even through their analyses
dealt with transverse oscillations. Both here and in their works,
no shock waves were consldered with the second order effect
being the addition of a constant#* plus a second harmonic term
to the wave form and the third order effect being the addition

of a third harmonic term to the wave form. No phase appeared

* Thls means conctant in both time and space for our case
but for the case of Maslen and Moorc, it means constant
in time through variable with chamber radius.
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in these higher order terms in their case as they did in our
case. Another similarity is that their nonlinear frequency
correction was of second order as is this term in our case.
Certain simplifications involving the application
of the characteristic coordinate perturbation technique have
been introduced herein. The first involves the use of the
Riemann invariants rather than the gas velocity and the speed
of sound even though the boundary conditions are given in
terms of these latter properties. 1In addition to their in-
variance along the characteristics, these former variables
possess the convenient property of continuity (up to and in-
cluding second order) through shocks. A similar convenience is

X
obtained by use of the variables [‘—_'—u- +t|J and [.w‘_
o

rather than X

Tr c-nm
L0 O LT

}..J

X
mann invariants, only the combination Tj:—'*t\] is con-

tinuous across forward-moving shock waves while the combination
lvu."t ] is continuous across reaward-moving shock waves,
Another simplification was introduced in Chapter III
whereby a certain degree of arbitrariness was allowed in the
numbering system for the characteristic coordinates. This al-
lowed the determination of a transformation x(d,;) and t Cu,ﬂ)
that possessed a continuous functional form for all values of
and,‘f . This type of transformation simplified the

process of determining periodic solutions., Even ir u(dl,ﬁ) and
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“G‘,ﬁ) are periodic, it is not certain trat % (KLt) and a¢¥,€)
are periodic. In order to determine this %(%,A) and {(w«, B) must
be known over a wide range. It 1is more convenient:ﬁmr%éﬁﬂ)and
't(“JU to have the same functional form o er the whole range of
Interest than to have different functional forms in different sec-
tions of the range. If there were no arbitrarinecs allowed in

the numbering cystem, the latter cituation would occur.

EXTENSIOMN OF THE /ANALYTICAL WORK

An interesting extensicn of the analytical work
would be the determination of periodic solutions with shock waves
whenever the enerzy feedback is described by means of the Crocco
time-lag postulatle., There is a serious difficulty which has pre
vented thils extension.

Accordiny to the Crocco time-lag postulate, the per-
turbation in mass release of burned gases m'(t) 1is proportional
to the pressure perturbation P'(t) and i1s also proportiorial
to the negative of the pressure perturbation at come well-de-

fined prior 1nstant P'(t-%’) . This may be written as follows:
mt)=n[pt)-p't-2)]

This 1s a linearized relation so that the error is of order G_g .
?: has been found to be approximately one-half the

period*(or, at any rate, less than the period) for unstable sit-

uations, Now, the period of oscillation 1s the time between

shock reflections at the combustion zone and, therefore, the

time between discontinuities in ™ and P, at the combustion

zone, If a time 73 after a shock reflects 1s considered, it

*This statement could be generalized to in:lude any odd multiple
of one-half the period. The following argument would be

essentially identilcal.
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is seen that P’ (t -?;) is discontinuous so that m (L)

and (or) P'(t) must be discontinuous at this point. This im-
plies there are other discontinuities in addition to those
caused by the primary shock wave. All these discontinuous jumps
would be of the same order of magnitude which is in serious dis-
agreement with experimental recults,

The employment of the time-lag concept which preved
fuccessful for the linear case results in failure for the rion-
linear case with shock waves, Apparently, this concept, ac
presently formulated, sives a cood description of the combustion
process in one instance but not so in another. Frobably the basic
phicical concept is applicable in both sltuations; i.e., tlie
characteristic time of the combustion process 1s an important
parame-er in the instability phencmenor. Tie formulation of

this concept, however, would probably change as the flow and

combustion process is modified; e.g., with the introduction of
shock waves., It 1s concluded that until a better understanding
of the combustion proccss is obtained, an investi_ution of the
instabllity problem with time-laz cffects and shock waves would
not be fruiltrful.

It would be useful to relax the lonz chamber assump-
tion and consider a distributed (longitudiually) combustion

zone and a nozzle length which 1is comparable with the chamber

lenztn. Each of these relaxations would cceparately prevent the
solution of the compatibility relations to be cimply the Riemann

invariants. Other terms involving the integrals of mass source
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and area change terms would appear making the solution much more
difficult. The consideration of the degeneracy at the nozzle
throat (where one famlly of characteristics is vertical in a
time vs, space plot such that no signal 1s propagated back into
the chamber from this throat position) would be gquite difficult.

In conjunction with the relaxation of the above men-
tioned assumptions, it would be extremely useful to develop an
approximate analytical technique in order to overcome the dif-
ficulty of the analysis instead of employing the technijue used
in this work. (The present technijue is also approximate, of
course, but the error is well-defined according to powers in

€ ). The merit of this other technique could be determined by
applying it to the limiting cases of concentrated combustion at
one chamber end and short nozzle. Those results could be com-
pared to the results of this work. If the difference is small,
the approximate technique which assumedly would be much simpler
would be a very useful way to obtain results with reasonable
accuracy.

A more accurate analysls of the combustion zone
dynamics of Chapter II and Appendix B would regquire an accurate
description of the rate function. For example, if chemical
kinetlcs provided the rate-controlling factor in the energy re-

A E/RT*
n ~&/
lease, one should use the rate‘/o e rather than the

- TI’
rate e E/R

as used in the numerical example of Chapter II.
The main difficulty here involves the determination of the gas

density behavior under osclllating conditions, If the isentropic
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relation were used, the rocket would be unstable for values

of {‘\L > | regardless of the exponential effect. Stable op-
eration over a certain range would be possible only for very
small values of ;t. However, energy release (and diffusion
effects 1if diffusion time ic not too long) makes the isentropic
condition invalid within the combustion zone. The proper re-
lationship could only be obtained by solution of the unsteady
heat equation (which has not yet been performed for this sit-
uation).

COMPARIS.'N WITH EXPERIMEKTS

The best experiment for comparison with this theory
of Chapter II secms to be the Princeton gas rocket. Details
o'’ that research will be presented in a report (Ref. 22) to be
published chortly. The gus rocket is of variable length and
emall diameter and burns premixed (hydrogen—air) gases with
E/RT* estimated at about 10, near the stability limits. Only
the longltudinal mode of instability occurs and it is observed
in the form of shock waves followed by small exponential de-
cay in pressure. Filgures 25 shows the pressure wave form ob-
served with the Princeton gas rocket. The pressure jump across
the shock 1s of the order of those calculated in the simplified
examplc, At low lengths, the engine is stable, but at longer
lengths, where the concentrated combustion at injector and
short nozzle assumptions are reasonable, instability occurs
(at the preferred mixture ratios) with no upper length limit,

The preferred mixture ratios for instability occur away from
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and on both sides of stoichiometric such that the same temper-
ature 1s measured at both stability limits. The various data
collected in that program'seems to be leading to the conclusion
that chemical kinetics provides the driving mechanism for the
Instabillity.

If it is assumed thét the gas rocket combustion
process behaves in similar fashion to the model investigated
in chapter two -» and, more specifically, that the energy
release rate r follows an Arrhenius type law approximated
sufflciently well for our purposes by the numerical example,
many of the observed phenomena can_b; explained by thils theory.
Using the estimated values of E/RT* for the gas rocket, the
theory predicts instability consisting of shock waves followed
by small exponential decay and also predidts the criticallity of
the temperature at the stability limits since the amplitude is
linearly dependent upon E/RT*, The theory (which neglects
friction dampening) predicts no upper length limit. The theory
predicts instability at all lengths (for favorable temperature);
however, the assumptions of the theory are violated at lower
lenzths, At short 1ength§, the combustion %one is nearer the
pressure node of an acoustic oscillation which tehds to be
stabilizing and explains the lower length-limit of instability
observed in the rocket.

In a series of tests performed by Crocco and Harrje
(Ref. 6) using like-on-like "injection in a liquid propellant

ro:ket motor of variable length, results similar to those of




@ 171

the gas rocket were obtained i1f there were end~-impingement of
the spray fans of like propellants, That»is, the instability
reglons occurred at low and high mixture ratios with no clear
upper-length 1imit., (If there were no end-impingement, an ex-
ternal pulse was sometimes necessary to move the engine into
unstable operation. The driving mechanism of the instabllity
here might be suspected %o involve droplet shattering.) The
instabllity occurred at all mixture ratios of interest with no
upper-length limit when the enzine was pulsed. The instabllity
occurred in the longitudinal mode and the wave forms were
shock waves foilowed by exponentia; decays. Due to larze mass
flow per unit area, the amplitudes were quite hish and it is
questionable that a theory such as this one which involves a
series expancion in an amplitude parameter could be applicable
in a quantitative manncr. However, qualitative comparisons
mizht be possible on the basis of more definitive experiments.
Longitudinal instability consisting of shock waves
followed by rapid decay of pressure has been cbserved in
radlally burning solid propellant motors by Brownlee (Ref. 7)
and Dickinson/(Ref. 8.) In thece motors burning occurred over

the length of-the chamber. It is interesting, therefore, that

~eéven thouzh the condition of concentratcd combustion is violated,

this type of 1nstabllity is still observed.
rocket engines,
a relatlionship should exist between the wave form in the longi-

tudinal mode of instability and the enerzy release rate as a
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function of position in the chamber. Presently, it 1s possible
to show this relationship analytically only for concentrated'
combustion at the chamber end and with zero phase between pres-
sure and energy addition. In principle, thouzh, thls concep:
can be extended to other situations. However, for the sole
purpose of seeking information concerning the combustion process
When phase 1s negligible, an englne may be constructed which ap-
proximately satisfiles the assumptions of the theory of Chapter
ITI and the wave rorm of “‘he instabillity may be observed by use
o' pressure ‘rans :acer:. Trhit prcmice. t> ve a pcrexrful te h-
nique for the study of combuctior proce ser, Of course, ir ap-
plying this information fo other configuratiors, it wouid be
assumed that the combusticen prOuezé remains unchanged. This
approach might be applicable to end-burning solid rockets as well
as gas rockets.

The validity of the results of Chapter II are presently
being determined experimentally by means of the Princeton gas
rocket research. As already mehtioned, preliminary‘results are
reported in Ref. 22, In addition, an expe?imental program
is presently belng undertaken to check the validity of the
results of Chapter III. |

" ‘The approach that is being used involved
the experimental determination of the effect of "pulsing'" the
motor with disturbances of various magnitudes since in the region
of practical values of n , the theory predicts the possibility

t

of "triggering" action. The possibility of ”tfiggering" action

for the transverse case has been well established as shown by




® 173-

Figure 2., Preliminary results for the longltudinal case are
presented in Ref. 6, but, as already mentioned "triggering"
actlon 'may involve the strictly nonlinear mechanism of
droplet shattering. This analysis, on the pther hand, assumes
a continuity between the linear and nonlinear mechanisms.

CONCLUSIONS:

1) Unstable operation of the motor is possible for
two situations. 1In one case, the characteristic time of com-
bustion 1s negligible compared to the period of oscillation and,
in the second, the two times are of the same order of magnitude,

2) It is strongly implied that the only stable periodic
solutions of practical interest contain shock waves (in the
longitudinal mode).

3) There is an important relationship between the
foreing function of the oscillation and the wave form in the
combustion chamber. a

4) Observation of this wave form by experimental
means could lead to certain information concerning the combustion
process,

5)/”Triggering” action of a longitudinal oscillation
by finite disturbances seems most probable whenever there ex-
1sts a phase between enerzy addition and pressure,

6) If there is a "continulty" between the linear and
nonlinear forcing functions of the oscillation, there is a
"continuity" between the linear and nonlinear results. For

example, the same stabillty limits are predicted.
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7) The nozzle boundary condition is extremely im-

portant in determining the stability criterion.
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"Slippage" of characteristics
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Experimental results from Princeton gas rocket.
chamber pressure=/00 psi, equivalence ratio =2.7
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Neutral stability curves

Shaded sides
unstable - small

perturbations
grow

S

Figure

Al



Effect of displacement from neutral line. m=3
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Solutions to differential equations
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Solutions to differential equations
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Solutions to differential equations
Case IIl . c = 0
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APPENDIX A
NONLINEAR MECHANICAL ANALOGY
The following ordinary differential-difference eguation
is considered
g_zr_-f/a de . Ay - nx + €2™ -
- ?
lhere/( <€, A n, and Tare positive or zero only and m is
cfome positive integer greater than unity. 1b2,represents
x(t-?) and implies a delayed action wit‘h‘ time lag ?'/Q and €
are considered small and of the same order of magnitude,
Therefore, both the nonlinear effect and the dissipative effect
are small. .
Perlodic solutions only are desired. If @ is the'
angular frequency of the solution, it is convenient to make
tue transformations:
PEw t 7=wl

The differential- difference equation becomes

2 d'* - - m.

v /o A d/" Ax- n'&_r +&€1M=0 (h1)

/9 1s now the independent variable with &) unknown. The
transformation is convenient because now the period of the

osclllation is known (equals 277), The transformation back to

the time dimension, however, cannot be performed until @ is

‘determined.

A perturbation technique is used to solve the equation
with € taken as the perturbation parameter, The perturbation

series for x 1is written aé follows:
= % 4 + o - _ _
72 °+€1,‘4.€. %,




A-2

n,@, and T (or @) are "eigenvalues" and, therefore, will
also be written in series form (Note they do not satisfy the
strictest mathematical definition of eigenvalues but they are
characteriétic values of the solutions). The series are
written in the following manner:

n=n + Cnl + € n, + -===

W (Jo + €Oj)- +€2w2 4 -

T = TO +€Tl +ez Ty 4 ===-

3’=?’o +€'¢""1 +e" ¢, + ----

The elgenvalue perturbations are included since the values of
these parameters depend on the amplitude of the periodic
oscillation. Conversely, the amplitude of the oscillation
varles with these parameters,

Sincelﬁ.and € are of the same order, it 1s convenlent
to say = k€ where k = O[1] . Now, the series substi-
tutions are made into Eguation (A-). The equation is separated
according to powers of € and the zero order equation becomes:

R
2 dx - AL —n1 =0
@, ;;;r’ ° "oy |
A periodic solution is of the form xo = A cos/o

(where A 1is the undetermined amplitude).' The characteristic
equation is therefore found to be the following:

3 -i T,

cwl +A-n e =9

° °
This equation determines the neutral stability 1line in @ vs,
n space (or in ¢vs. n space). Since it 1s a complex

relation, it may be rewritten as two equations:
2 _hOMT, =0
~Q +A-n e T =0
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Actually, two curves result from these equations and they are

given by the following relations:

@'= N +n hime T2, = m I o
w:=)\-r5 wohun. T=% = 0, Zm Lo (-2)

Only the I and 2F cases are considered here. So, in ZP,
n spa%s, ;he following hypertolae result: |
(_‘FFL) (/\*‘no):l v e T; =TT
?: L4
(TI—T:)()\‘ho)= 1 when T, =-m

These curves are shown in Figure Al. Note that only
positive values of 2', n, and)\ are considered. A stabllity
analysis of Equation (1) shows that small perturbations grow
for values of & and n to the right (shaded side) of each
curve, Small perturbation decay on the other side of each of
these neutral stabllity curves,

Equations (A-2) yield interesting information about the
solution. Whenever no time-lag effect exists (n = 0), the
resonant frequency of the harmonic oscillator is obtalned,
OtherWise; the time lag is most important in determining the
frequency. In fact, in fhe cases considered, the ratios of
the period of oscillation to the time-lag are simply 2 and 1.
Whenever the time-~lag effect is most significant (rr>)\), only
one frequency 1s possible, However, whenever the time-lag
effect is least significant, (A» n), two frequencies are
possible.

At these neutral stabllity lines, the amplitude 1s




zero, Although at a small distance from these curves finite~
amplitude oscillations may exist. The rest of the analysis
deals with periodic solutions of finite amplltude for o, n

points close to the ?; vs. n_ curves.

Now 1t 1s necessary to investigate the higher order

equations. The first order equation 1s: c
4

o

d% d%,

The first case to be golved has the exponent m = 3,

T

The substitution x_ = A cosp 1is made int\o Equation (3). It

is seen that xi has tbe particular solut;on X, = ¢y cos 3/0,

where ¢, is an undetermined constant;”“Spbstituting for x;

and separating coefficlents of cos 3/0 cosyo » and -'sin/a in

'Equation (-3, the following three relationsaresult"
Lo+ A EnTJe + 5 =0

.__[-z.cooo' :'.'n,]q- %ﬁ--.—.o
AfFn T +kg]=o0

The upper sign 1s understood when TO = I and the lower sign

(A-u)

is understood when TO s 27T,
Ir ‘use 1is made of Equations (A-2) and note 1s taken
that T, =@ 2] +, ¢, Equatlons (4 yleld the results;

1 "
c, = A |
! 64w’ 5
. [ 3.
+ Koo' _ oo 2 F Do Slfl_.
| — [-] e ' 2 ?
e, &

I+
03
-~
n
x
€




o

Note that cl is real and positive, so that the
third harmonic 1s added with zero phase. c1 is determined as
a function of A which depends on the displacement from the
neutral stabllity line., Therefore, given hl and ‘21. A
and c1 may be determined., 1In the absence of dissipative
effects (k = 0), the ratio of the period to the time-lag
.remains unchanged,

For the case T = m, periodid oscillations are
permitted for i?} n polnts both above and below the neutral
line. However, oscillations at points above the neutral line
are possible only for sufficlently large dlssipative effects.
Oscillations are possible below the neutral line with, or
without, dissipation. For the case To = EZ”: periodic solutions
are only possible at @, n points to the right of the neutral
line. (See Figure A2). The interesting result is that, for
the case TO = 77, finite oscillations are found at points
where a linearized analysis would predict a stable situation.
Therefore, it is possible for nonlinear effects to produce an
extenslon of the instability region,

The second case to be examined has the value m = 2,
In this case, no dissipative effects (k 3 0) are considered,
Again, the substitution X, = A 008/0 is made into Equation(a-3).
The particular solution is X, ®= Cy COS 279+-03 where Co and
03 are undetermined constants. Upon substitution for Xy into
Equation Ueﬂ and separation of the coefflclents of cos %/Z 1,
005f31 and sin/’, the following four relations are obtained:



2
[ﬁ'4'Q%.z4-;\ -'hL] Ch + jfp‘ =0

()\-no)cs + éq-f' =0

o

I

A [-2 @& ow n,]

H[?no 7:]=O

(A-5)

Through use of Equations (A-2)and of the rélationship

Tl - @, ?’1 + & 2'0 » the following 1s obtained from Equation

(a5): 2
¢ A
DIEET PR ysey

»~
]

-6
T- o (A-6)

02 is positive and real, so that the second harmonic is added
without a phase. ¢y 1s positive whenever nj > )\ and
negative whenever n_ <A . In each case (To = or T, =20,

the relation between ?3 and n implies a displacement

1
tangent to the 2:) VS, no curve rather than away from the
curve. This 1s a trivial displacement in Z?Vs. n space and
no generality 1is lost by saying f? =n, = 0. If there exists
a nontrivial displacement which wlll yileld finite amplitudes,

the perturbations in 2vand n must be of higher order,

For the m s 2 case, it 1s necessary to solve the
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second order equation in order to determine the elgenvalue

perturbations., This equation 1is written as follows:

e 4t 2
a5-5%14 +4\05 -h '51, 2w o d 7 -

. irt
h ¥ _ + h J""-}T T +2x % =o

(3 4 * ~dp 4 (A-T)
Upon substitution for X and x, 1in Equation (A-7), the
particular solution X, = C) cos 3/; 1s seen (where Cy is

an undetermined constant). Now, after substitutlion of the
solution for X, in Equation(&q) and separation of the co-
efficlents of cos 2’ sinlp , and cos/o , the following results
are found:

[- 9« + )s:"_n]c + Ae, =0

° + 2
A[—ww + "2 4+ e +c]=0 (A-8)
o 2 — R a

It is seen that T, =@, &, + W, &, for this case. After

this substitution, Equations (A-d), (3-6), and (r-8) yield:
3

C4= TSacrtn)[anzn)-(an)]
T; =

2

n
- 2
“o

_ 2 / ,
* - = A [2 ","‘ METYS & h,)-4(>\”;)1

ol ©

Cy 1s real and positive so that the third harmonic 1s also
added without any phase,

The final relation determines the perturbations 1n
e'and n necessary to obtain a given amplltude A or,
conversely, the amplitude depends on the displacement from the

neutral line. As is shown in Figure A3, the unstable region




A-8 ‘

(in 2’, n space) is extended by nonlinear effects for the case
TO = 2/, For the other case ('1‘o -77’), the unstable region is
extended whenever n, >>\ However, this 1s not true whenever
‘A >'no. There, perlodic solutions are obtained in the unstable
reglon only. In the cases where the instability reglon is
extended, 1t has not been possible to find periodic solutions
within the linearly unstable region (region where infinitesimally
small perturbations grow to a finite magnitude). In order that
these perlodic solutions be found, certain nonlinear dissipative
effects must be present.

Note, in the m = 2 case, an elgenvalue perturbation
of 0(62) produces a finlte amplitude while a perturbation of
O(€) 1s necessary in the m = 3 case, This implies that
finite amplitudes occur much closer to the neutral line in the
m = 2 case than in the m = 3 case.

The important conclusions are that: (1) off-resonant
osclllations are possible for both linear and nonlinear
phenomena, (2) the region of instability may be extended due
to nonlinear effects, (3) the amplitude of the oscillation
depends on the displacement from the neutral line in some eigen-
value plot, and (4) the elgenvalue perturbations may be of

hizher order,
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APPENDIX B
INVESTIGATION OF COMBUSTION Z NE DYNAMICS
Consilder a 6ne-dimensiona1 combustion zone near the
injector of a premixed gas rocket (or the receding surface of
an end-burning solid propellant rocket). Assuming the gas 1is
calorically perfect, the governing equations %are:

Equation of State: P=PT

Continuity Equation: &2 , _9_ =
ontinuity Equatio ¢ *04[/“') o

Energy Equation: '.ZI y (01" +a2 ) = t "'""‘T_Ech’)‘) ]
All thermodynamic variables are nondimensionalized with respect

to thelr steady-state values at the point of completed combustion;
Velocity u is nondimensionalized with respect to the steady-
state speed of sound at this point of completed combustion;
time t with respect to chamber lergth divided by speed of
sound; space dimension x with respect to chamber length;
eénergy release rate per unit volume r with respect to steady-
state pressure times speed of sound divided by chamber length.
Thermal conductivity and turbulent exchange coefficient are non-
dimensionalized with respect to pressure times speed of sound
times chamber length divided by temperature. This same non-
dimenslonalization scheme 1s used in the analysis of the chamber
gas dynamics.

The momentum equation 1s replaced by the assumption
that the pressure gradient 1s zero throughout the zone. Actu-
ally, the pressure gradient is of the order of the Mach number

and 1s taken as negligible in small Mach number chambers. These

*The species equation 18 omitted 8ince r 1s assumed to be a
function of thermodynamie conditions: only.



equations may be combined to yleld the equatlon:
duw L JIP - ) 9T
Por="7 7¢+ 7% "*‘UF"QTEQ*A).M] (B-1)

Equation (B-1) can be integrated with respect to x from x =0

(injection surface) to x =gﬂ which is some position at which

the reaction may be assumed complete. Notlng that ‘L: 0 at
X = 0 and '3% =0 a,t' 'ﬁ'-'j, the following 1s obtalned:

o . d £ x-1 £ -
P 2 5E g [T ) 2L
o

which may be rewrlitten as

__dP 4 oy ph [ _¥l 9T
Plu="JdE ¥ T ¥ I rdre [ T-F-A 57 s
(B-2)
Equation (B-2) may be simplified by assuming that the perturbation

=0

of heat transferred to the inJector surface (or solid propellant
surface) and the perturbation of convected energy through that
surface are negligibly small compared to the perturbation of energy
of combustlon. _Note.that this allows no change in the mean
burning rate due to the oscillation. Letting zero subscript
denote steady-state values, the steady-state equation states:

—Ub,‘, = _%:__Lf’g ,AO d},%[m];- {?‘%%—%—]

(B-3)

Allowing primes to denot: perturbation quantities, Equation




'.. | B-3

(B-3) is subtracted from (B-2) to yileld

_dP L 1r'J¢
Tt T r (B-4)

(pu)’
»s o
(pu) =L represents the energy put into the oscilllation of the
chamber gases. According to equation (B-4), this is large when
the reaction zone is spread out in dilstan.e (largel ). In other
words, the rocket becomes more unstable as the reaction zone is

lengthened. It 1s stressed, therefore, that according to this

model, lower chamber pressures would cause a more unstable

situation.

The enersy relcase rate 1s a function of temperature
and pressure and may be expanded in a double Taylor series about

the steady state values, So that

rer, Joo(* JP) (p-1)+ (¥ JT)‘T'“*
F(+ £F) Cpurs (-L‘;é—T)cp O(T-1)+

r JP
1L d*r 2
b ER) (Tafe g -5

Substituting Equation (B-5) into Equation (B-2) and maxing use

of Equation (B-3), the reoult is:

Lo (- 1)+ & ZEL(T-0)0d%

(""o 2,1 (P 1)+ jr d

l r ! = N i -
(e« _LoliC 25) (- of (25 ) -t B

~dp &

L_dt ¥
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Now, 1t shall be assumed that the reaction zone is so thin that
the time derivative term 1s negligible. Also, the integrals shall
be replaced by using mean values of r , its derivatives, and T

in the combustion zone. This yields,

(d u) =~ (F-i)'*[(‘#gg)ofp- 1)4-('#%;—)"(1'*1)11

ks %L

~(p-4)(—2),., +£z‘(..§.") (p-* + (¥ W) (T-1)(p-1) +

(#555), (0o (o)

where the subscript M denotes a mean value. Note that ro

possesses a maximum somewhere in the combustion zone and that the

mean values are approximately the local values at some point near
the maximum point.

Now, of course, the temperature perturbation (T-1)
muct be related to the pressure perturbation (p-1). The re-
lationshlp between these two perturbations differs from the
i1sentropic relatlionship due to two effects; release of enerzy
and diffusion within the reaction zone. Diffusion effects are
negligible when the diffusion relaxation time is much longer
than the perlod of oscillation; however, the clemical relaxation
time 1s almost always much shorter than the period of the os-~
cillation. Rather than attempting a solution of the nonlinear,
parabolic eguation which would give the correct relationship,
the isentroplic relationship shall be assumed. Therefore, dif-
fusion relaxation time is assumed very long and variations in
entropy production due to combustion are deliberately neglected.

Note that thls isentropic relationship will apply through second
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order in wave amplitude even when a shock wave moves through the
combustion zone. Under these assumptions there will be no time
lag or delay in the system.

It is convenient to related (p-1) and (T-1) to (a-1)

through the isentropic relationship obtaining in series form:

1 8 .
(p-i)'-‘ '%T(a.-.l) 'I((‘.“T (a-1)a----

(T-1)= R2 [a-l)*-(a--l)z (B-7)

Substituting Equations (B-7) into Equation (B-6), the following
result is obtained:

(u-u,

T!-"g';‘ (a- -1)-

'(%)«,1‘2%@ 1)+

=
]
LI
-
L B
|

¥ (¥~ € T+) __'o_'_z ok
TR kg R ) 2

N LU L P JUN-L . [ R
¥-1 ¥ 50T T o772
It 1s understood that mean steady-state values are used for the
coefficients of (a-1), (a-l)g, etc. These are the same mean
values as appeared in Equation (B-6).
Now, usinz the method of successive approximations

to substitute for'( ) on the right-hand side of this
=4
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equation, the firal relaticn becomes:

(Lg‘) = [2_;._2:. +2¥8 o 9r _ 2% (a-1)

w JT ¥ r oap -l
= o
~2t Lo 2% 1L 9r _2Y¥ ] ta-1)*+
r-nl%"}%*' -1 TIp
(-]

+ | U(¥+) & Ir L Ir S I R R | SRR L
— 2= #R — - +
[('f-l) r P "a'r (r-l PEP-T + - ) r JP T
L I
+Z.,.. 3_—'_1— I%ELZLJ(& 1)"'---- (B-8)
o

Equation (B-8) is a nonlirear relation which states in an ap-
proximate manner the perturbation in the cutflow velocity from
the combustion zone due to a perturbation in the mean thermo-
dynamic conditions within the combustion zone. Therefore, this
1s the governing relation for the feedback of energy to the in-
stabllity.

By comparlson with Equation 9 in Chapter II, 1t is

seen that for thls type of combustlion process

sk 2L L 28 L Jr 2%
W= 2T 5T ¥ ¥ rJp r-

o
1L or v 2,
(v-1)% ¥ ) raT *2 (?-—n) 'F"j';'; ?
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APPENDIX C
SMALL PERTURBATION ANALYSIS

The stabllity of the steady-state operation is
examined for the configuration as already defined in
Chapter II; that is, a one-dimensional flow in a constant-area
chamber with a zero-length nozzle and a combustion zone
concentrated at the chamber end, Also, the perfect gas assumption
1s made,

The transformation to characteristic coordinates is
made with the following numbering system for the coordinates:
acf/? at x = 0 (combustion zone), &= 1 +f9 at x =1
(nozzle) and ot-/&= O at the initial point, x = t = O,

The equations of the system are given by Equation (2)
Chapter 11
L a I 0O
- x -
2 . Ja _da _ o

|

¢
0
&
P
~—

&

The usual nondimensional scheme is used: thermodynamic
varlables are nondimensiocnalized with respect to thelr steady-
state variables and velocity 1s nondimensionalized with respect

to steady-state speed of sound, Further, space dimension is




nondimensionalized with respect to chamber length; time with
respect to chamher length divided by the speed of sound.

For the purposes of this analysls, the filrst two
equations are of maln interest. That 1s, 1t 1s desired to
know the time-wise behavior of a small perturbation aof the flow
properties, Nonlinear corrections 1n the coordinates are not
desired, 3o, the first two equatlons only are investigated
in order to determine the stability of the system under the

influence of small perturbations.

These equationé have the following solutions:
- 2
P(Iﬁ)" T a t+
- 2
QE@)=TF1T a-u

All flow propertles are considered as a steady-state

term plus a perturbation term:
P(8) = R (g)+ P(8)
Q)= Q)+ Q &)
w = («,(s)i- u.'(d,/s)
a =1+ a (ot,/a)
where zero sﬁbscripts denote steady-state quantities and primed

symbols 1ndicate perturbation values,

The perturbation equations are found to be the following:
®= 7

-/
CQ 1;6)_= ) a - uw

T al + W
2
¥
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so that P'(P) - Ql (“)
U’ = 2

a' = -!;L-l]5'6ﬂ9'+’62'61§]

(Cc-1)
The boundary condition at the combustion zone results
from perturbing Equation (9) in Chapter II. It may be written
as follows: |
wEouw a ot o¢=p
Substitution from Equation (C-1) results in the

relationship:

(1I-wv) P (B)= (1+wr) @'(p)

¥-i
where Vv E T— u.

Equation (C-2) indicates that a wave gains strength in reflection

(c-2)

at the combustion zone (P'/Q' »1). This gain 1s expected due
to erergy addition from the combustion process.,
The boundary condition at the nozzle entrance is
written:
wWs=su a’ at «-= I+
For this case, substitution from Equation (C-1) yilelds

the relationship:

(1-v) P (B)=(1+7) Q° (1+8) (c-3)

Equation (C-3) indicates that a wave loses strength in reflection
at the nozzle (0'/P' € 1), This loss results from the convection
of energy of oscillation out of the chamber through the nozzle.

Note that changes 1n wave strength may occur only at the nozzle

_4—
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or combustion zone.
Now, Equations (C2) and (C-3) may be combined to yileld
the following relationship:
P-8) - Qs - (LL )(_l_tmr)s
= = -V I +Y /(

P cs) Q( f
Note that the natural perio

of oscillation equals unity (in
characteristic coordinates). So, the value oﬁ/ﬂlindicates the
change in amplitude of the disturbance over a period of tlme.
Specifically, whenever'//c > 1, exponentlal growth of.the small
disturbance occurs and whenever’/d-( 1, exponential decay occurs.
In the specilal case//(- 1, a neutral oscillation of the small
disturbance is obtained,

The following is readily seen: & 2 1 1impliles /‘(>1,
W= 1 implies A= 1, and &<1 implies A< 1. Therefore, 1if
W > 1, the motor 1is unstable; i.e., small disturbances grow
until inhibited by nonlinear effects, The growth is forced to
occur because more energy 1s added to the oscillation at tune
combustion zone than 1is removed at the nozzle. Whenever, W< 1,
the opposite 1s true resulting in a stable situation; 1.e.,
more energy is removed at the nozzle than 1s added at the
combustion zone., Of course, whenever &= 1, the energy addition
and energy removal are in balance, explaining the neutral

osclllation.
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APPENDIX D
INVESTIGATION OF SOLUTIONS TO DIFFERENTIAL EQUATION OF CHAPTER II
In Chapter II the differential equation which governed

the waveform of the oscillation was found to be of the type
J, = "'-4- )\1."

g c-4

c=F [gcn+ ¥(°)J

This differential equation is related to the combustlon insta-

where

bility phenomenon by means of the following definitions:

Y6e) = Q' (x)

-+ -
l*a =V

)\_-,.l(.u. (L):- I

(el )(+V) [l"'-‘- B 2 I-Hb,]

r = ';‘-'&7 (“U“)E “u- 'f“]

ra, -V Y T,

The value of r 1s always positive for practical situatlons.

)\ is usually positive, but may be negative, A continuous
solution for y(®) 1s sought in the range O £ & £ 1, Since
expansion shocks are not allowed, negative Jumps in y (or Ql)
are ruled out, Positive jumps (which correspond to compression
shocks) are allowed at the endpoints (O and 1). Since c¢ 1is
defined as the average of the values of y at the two end-
points and the solution is contilnuous between the endpoints,
there must exist some value of o (in the given range) such

that y = ¢ at that value,




It is more convenient to look at the reciprocal

equation:

JGL - Cl-ii
7_7'— TETAE (D-1)

Note that if o(y) 1is.a solution, o¢(y) plus any constant
is also a solution, Sb, any curve of the solutions may be
translated 1n the of-direction on an o vs. y plot in order
to satisfy one condition on the solutlon.

| The topological structure depends very much on the
values of /\, r, and ¢, The case ¢ >» 0 and )\c+r> 0 1is

considered first. Here, a maximum of o¢(y) exists at y = c.

It i1s also seen that gj; becomes infinite at y = O and
y = -‘ﬁ . There are three separate structures within this

first case depending upon whether )\ is greater than, equal to,
or less than zero,
I )\ >» 0, the following additional information 1is

given by the differential equatilon

y<-§ ’ %>O
r de
O>y>‘)—\ ’ a'§'<o
0Ly<Ke ’ %70
y
y>c ’ de 0
35"<

Figure D-la shows the above informatlion in graphic form., The
solutions are continuous within each of three adjacent regions,
They cannot, however, be contlnued from one region to the next

except, perhaps, at infinity.
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In the subcase )\ = 0, the differential equation
indicates the following:

det
0 , -0
vy < dy(
0Ky <c R dc(.>o
y c R de¢
7 dy <O

Figure D-1b gives a sketch of the solution for this subcase,

Note that there are two continuous regions with a discontinulty

between them, The results for the subcase A(O are obtalned

in a similar fashion and are shown in Figure D-lc. It is seen

that they are similar to the other subcases. The only possibility

here 1s that ¢ <-§ (since ¢>»0,Ac4r >0, r >0, and /\<O).
Next, the case ¢ 2> 0O and /\c+r< O 1s examilned.

The only possibilities here are ’\<O and c>-§ « A minimum is

found at y = ¢ and infinite slopes are indicated at y =0

and y = j; . In addition, the differential equation indicates
that: -
0 dec £ O
y< ] dy
qed
0 & r ——— 0
y<X ’ 5 7
r < < d« 0
- Y (e} ’ ——
A dy <
dod
e —t— o)

As shown in Figure D-1d, three regions are obtained with dis-
continuities between them,

The third case has ¢ > 0 and /\c+r = 0, Here




c = _i » S0 the only possibility is A(O. The slope is infinite

at y = 0 and at first sight 1s indeterminate at y = c. Appli-

cation of L'Hospital's Rule, however, shows that .g.;'f_ =% at

y = ¢. In this case, no maxima or minima exist except at infinity
The slope 1s positive for y > 0 and negative for y € 0, as
indicated in Flgure D-le.

Whenever ¢ > O and Ac+r¥0, it 1s not possible
to have a continuous solution in the range 0S€ ¢ ( 1. Since
c = 4 [y(o) + y(l)] and y(1) € y(o) for a compressive shock,
1t is necessary that y(o) »c and y(1l) £ c¢. 1t is not
possible to have a continuous solution without going outside of
the range 0§ ¢ 1.

If ¢ » 0 and >\c+r = 0, a continuous solution can
be found between y(l) and y(o). The slope is positive,
however, so that y(1) > y{(o) which would indicate an expansion
shock.

The possibility ¢ > O 1s ruled out, therefore, by
not allowing discontinuities within the range 0L %L 1 and
by not allowing expansion shocks,

The sketches of the soluticns for all the subcases
within the case ¢ € 0O are obtaired ir similar fashlon and
are shown in Figure D-2, Identical arguments may obviously be
used to rule out the possibility c < O. )

Finally, 1t can be shown that in the case ¢ = O, the

restrictions on the solution are not violated., 1In that case,

the Equation (0-1) becomes




-
dy )\’_ff‘ (D-2)

There are three subcases: /\>O,A= 0, and /\( 0., 1Irf /\* 0, an
infinite slope occurs at y= 7; . Whenever /\ = 0, a straight

line is obtalned, The curves for the three subcases are shown in
Figure D-3, Note that in all subcases, a continuous solution

may be found with y(o) >c = 0 >y(1). It is concluded, therefore,
that ¢ = O 1s the only possibility,

Now, it remains to solve Equation (D9 with the condition

“y(1) = -y(o). This statement of a relationship between the

solutions at two points is Jjust as satisfactory in determining
the arbltrary constant as 1s the statement of the exact value
of the solution at one point. Equation (D2) may be integrated to

yield the following result:

) ¢ Jt L Ag+r
= j:: ¢t =-x A Nglorer
#co -

This may be rewritten in a more convenient form as follows:
r r -Aw
ple)= - X * [’X *"d‘“’] <

Setting &= 1, it 1is found that

(D-3)

A
= -
o = gl = % e

Substituting the above for y(0) in Ejuation (D-3), the final
solution 1s:

r T 2 -Ao |
o= p@=K|Fwer ©
Takingz the limit ac ‘A —_— 0, a linear relation 1s found:

Q b0=r(Z-<)

n
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This same result could have been obtained by setting /\ =0 1in

the differentlal Ejuation -2) and then integrating,




APPENDIX E
NONLINEAR EXTENSICN OF CROCCO TIME-LAG POSTULATE

According to Crocco (Ref, 1) the combuction process
for a particular element of propellant is sensitive to per-
turbations in pressure and temperature over a time period of
magnitude ? before that instant when the propellant initially
becomes burned zas. The combustion process occurs at the
rate f durinz the period Z'until an amount E 1s gccumulated.

That 1is, for an element of propellant burning at time ¢,

E= f £ 4t (E-1)

In other words, lo the rate of accumulation of some entity
and E 1s the amount of that entity which must be accumulated
before the element burns. f will be censitive to both pressure

und temperature fluctuationc,

also the speciric relationship between f and temperature and
pressure is not certain., This will be left in an arbitrary form.
Much may still be determired from this type of approach as
has been accomplished for the linear case by Crocco.

It is convenient to relate the mass flux of burned
zaves to the rate of change of time-laz of tre propellant
burning at a particular instant. Note that the assumption of
concentrated combustion zone at the injector end is used. The
concept, however, is readily extendable to other cases (see Ref. 1).

The mass flux mi of unburned propellants entering the pressure ssnsi-
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tlve portion of the combustion process at time t-®1s different
from the mass flux of burned gases, hy, emitted from the combus-
tion zone at time t'. (The mass flux entering this sensitive

portion of the combustion process equals the mass flux injected
even 1n the unsteady-state). If Jz 1s the time during which a
unit mass of wunburned propellantsz enters the pressure-sensi-
tive portion of the combustion process and ii‘Jz 1s the time

during which the same unit mass is emitted as burned gas, the

conservation of mass relation tells us that

(‘t) J{' = M (¢-72) ;g (E-2)

The differerice between the two time durations (Jt and
Stz ) depends upon the difference in the period & or the parti-
cle at the bezinning of the duration and tie period i”of the

particle at the end of the duration., The relation is

Jtz», T +Et)- @) (£-3)

Wnere 1r(t) 1e the duratior of the pressure-sensitive portion of
thie combustion procecs for a particle which burns at time t.

Equations (E-2) and (E-3) may be combined to yield the relation

; (L4 ) - T (¢)
:é = é-.tﬁ. =l - Jt
™ Jt, f
Taking the limit as ft‘ —p @, we get
b .42 (e-4)
m. “dt

Now, 1t 1s desirable to relate ﬁ%;‘ to fluctuations in
the thermodynamics properties by means of the relatlon given by

Equation (E-1) and, also, a relation between f and the thermo-
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dynamic properties. The resulting relationship would provide

the boundary condition at one chamber-end for the equations
governing the wave phenomenon. Since the wave equation is beins
Solved by a perturbation technique, it 1is convenient to express
the boundary condition as a series# in the amplitude parameter,fi.

Also, the boundary condition should be transformed to
apply 1in the characteristic coordinates which are used in the
gasdynamic analysis of Chapter III.

It is seen that the duration of the period of pressure
and temperature sensitiviﬁ;,?ﬁ and the rate function, f, are
both dependent upon the amplitude of the fluctuation. Tne
critvical amount of the ehtity-to—be~accumulated, E, Jdoes not
depend on the anplituce; 1.e., 1t is a constant assoclated with
trc particular injecter andg propellants, Expanding the right-
hand side of Eguation (E-1) in a Taylor series, a relation is

~ 3y 3
o 4AJ.AA

-
[ S Y

-2t t-2(¢,0) £-2(

c? _g_’ » pt )
+ e Je f F(e; e)dt]+3!£§3f£(te)4£

t-2(te) t-2te) -0
+0(e*)
Since E is irdepcricnt of €, 1t is concluded that E = £ Co)dt .
t-2(t,0)

Combining thils ctatement with ihe cbeve, the sinplificd relatior

*¥ Thne series must include term: of or’der’ej and below sirice, as
will latcer Ve chown. tte ci- senvalue perourbations are ol Lec-
cnd order,




1

E-!'
is written:
0=c |5 tF(t'e)Jt' e [28 t; ‘€)dt’
e[;e , + FE—G'J‘ (t,€ J+
t-T(t,€) C=0 t-2(4€) C<0
3 (E-5)
+ & [3?, Frret’] 4o
t- 2(t,c) -0

Eguation (E-5) states that £ and ¢ perturbations must be related
to each other in such a mauner that the integral of Equation (B 1)
remains unchanged, For example, 1f the average value oif f cover
the time period t'?& t‘ st i1s less than the steady-state
value, 2'15 then sreater than 1ts steady-state value,

Lelbnitz' Rfaice 1¢ usced te craluate the derivaiiveo of
the 1intesrals in Eguatior (E-5). CSuppose that f(t,€ ) and

way be written in scrice form*;

F:-lé + ef (t) + et f(t)-'- €’{(f)+0(‘1‘)

T=7 +ex )+ € T -G FOE?) (36
If we assume that the ceriec are conver_ent, it follows that

G e () G

€30

ARE (;) z=£—z(§—§)mx€'—',--€_?)

Ucing this irnformation, thre application oi" Leibnltz' Rule to

¥ TNote inat IU 1Is always assumed thatfo(t be replaced by
i1te avera;e rgluc over the period L-2 & t's,t . D0, fu KRS
a corctant inccependent of time.
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Equation (E-5) yields the following:

o=cl {; fdt'+f, 5]+
v LA d £ -2 gl
s L B RE2) O h ) T f 2

R o
~F(2)° SE (tz)]v 0 (Y

An expression for ﬁ[ﬁ 2\,'+€22; +€’?_;J 1s readily
obtainable from the above equation. However, this will not be
an explicit relationship between the perturbation in @& and the
perturbation in f since such terms as ﬁu_-z:)-[e‘z;aa e’ 2‘2'4- 0CeY ]
wlll appear. This appearance of the coefficients t;, 2; etec.,
are in terms of higher order in € » S0 that the method of successive
cubstitutions 1s applied to obtain an explicit relationship#,

This relation may be written as follows:

: - at 5
hLeg cgee’gI=clf a1

t ' 4 f
A A R N MR T L
f—?; t-2;
+c:’[ft f Jt'—f,.a-?)l';ft f dt'-
f'% 3 0 {_2: I

femd [0 as (he2) T
=9 o/ o - 2 (;L;:—ﬁ—!) .£=?; 1
4 ¢ ¢ R J'Fl
4G [ ) EenTowe
‘Separation of the esguations accordinz to powers in € is with-

held temporarlly untill coordinate perturbations and eigenvalue
perturbations are completed. :
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The relation on the previous page may be differentiated to
obtain _giﬁﬁ (Note that 'ﬁig;:= O -
Jdt It

€[ ot -%)-F(E) J+

oSZ
I %

et [,{L(f-z:)-ﬁ(ﬂ , fubrfct BFEED,

O (]

_/.]-;l"r dg(é ?’)]\ O/ZJ+€ [‘F(t ) - f(£)+

d
P Jfs {
tfT S 2’).[ T - Z“)[#(é)ﬁi?fj_,_

.}

Iy z)[f [ BB

, L)~ <c2“)f ,(a/gf,, f(tﬁ?’)j z(t,‘) £(t-2)

[

,cm#ct-’ep {’ff @)}*f 2f? (f,c Jt’ ) /I (¢- "']*0(5/

(E-T)
Now, the rate function f depends upon temperature and

pressure. It will be assumed that the dependence is the same
throushout the combustion process; 1.e., f(/o(t')) T (¢ ) )
would remain constant with p and T even if t' varied. In other
words, the effect (upon f) of changes 1in thermodynamic conditions
is equally important for each and every instant a particle spends
in the process of belng combusted. Furthermore, by means of an
equation of state and the Laws of Thermodynamics, the pressure
and tcmperature at any time may be related to the spead of

cound* at that time. The exact nature of this relationship can

orly be determined by an extensive investigation of the combustion

* Tt ic cor.erlent to work Wit tne cpeeu of sound when
anal; Zinr wave phienomena.
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process. For our purposes, an arbltrary relationship between f
. and the speed of sound a shall be assumed and the theory shall
be ceveloped in this heuristic manner. Specifically, it is said

that a Taylor series may be written

£ 1 Mea-2)rMa-1) %+
1)

+ 21 ca-10° + Orduoc (a.-/)4

N = (i%-<5i£?2 ; M = (}l ;%g%;z’ J Lss'(éif‘£§é§§ibz:/

The standard nondimensional schcme is used (see Chapter
I, page 13) so that a = 1 is the steady-state value for the speed
of sound. N, M, and L are coefficients which are related to the
combustion process and they must remain afbitrary until the ex-
act nature of the combustion process is understood. However,
the important point is that stability criteria are strongly re-
lated to these coefficicnts as is shown in Chapter III. The def-

-1
inition n= £~K-IV is made to be consistent with Crocco (Ref. 1)

wno wrote f as a Taylor series in the pressure perturbation

(L df .
(n=(1— dP )P=' ). As stated in Chapter III (Equation2 ),
the speed of sound i1s written as a series irxél Substitution
of this perturbation series in the above Taylor series for f (a)

and comparison with Equatlon (E-6) ylelds the following in-

formation:
£'__=_3_‘(_ha,)-£&=_§f_ha,+/"la7a
£, -1 £ - 2
O
£5 _ 2¥n. a,+2Ma;Q»+La7'3

o




The relations on the previous page are substituted into

Equation (E-7) with the result

JZ LN 12 . -
Pl eir_, s -2 o.’({:)Jj-{-

4.€? {ﬂﬁ[—l (t-2)- < (f)]+ M):O.’Z(f.-g‘)-%z(f)]
2U'n) a(f-?">)}.(f) a (t- ?*J (ff,h) e, e %;gf

L€ ZT” [a, (t-2)- Q(ii]m[/w 2”’)]0. (t-2)a (£-T)

(L a (¢-3)a (&) zrn)‘o. (Da 202 My (e d)

+l- LMy +(RER) ] - [ 280 m(28) Ta¥e.g)q (2)

+-§—b:—- M Qz('é)Q(t ?‘) La.ja)+ ZO'h) da.z {t_?\vj‘z; d/Lz,

?l
4rh da, y
VB AT D DS S
t- 2’
¢-&
.;.%DMda(f?' oé(+ifrn)qu.(f?')[f20’i7z
Z-2 * ¢-?

t
+(2b"h) , (¢- ?’)a&)fa:c/f}
- (E-8)

o




The mane [lux from the combustion zone should aite ¢
expanded in a series in € before substituting Equation (E-3)
into Equation (E-4). Of course, the mass flux = Pu. Furthem
more, under steady-state operation, the flux injected equals
the flux emitted from the combustion zone. So, m‘=/oouo.
Noting that both f and u may be expressed as series in &, we

find the following
Mp _ _l+elp+ %)y
Regpe et
% w L xm ) (o +
+ € (/g*'ﬁ ., +u_°> /%3

u, Z(Z 2‘3 C€4)
+/?'io—+/? u, +z¢°)+o

It 1s convenient to relate the coefficients fﬁ, f5, ete.

P N P N I o IRt N - - o~ TTen A mam 4= 1a A~ oy vt e 4o o L3R PR
LU Llle COEl1ll1Cliernus dl, 'dz, cuvi, vilue L vilic aocolinprions vnatc

* .
the gas 1s perfect and the flow field is homentropig®outeide of

the combustion zone, the following statement is valid:

o

Substitution of the perturbation series for both/D and a,
expansion of the right-hand side in a binomial serles, and sep-

aratlion according to powers in € yield the results:

A= % ) /‘32 = 0= % o) S
_ R (3-¥) 2 (3-7)X2-¥r) _ 3
IV AR s g s ST e

Combination of the above information and Equations (E-14),

*Egg{gg%éay an_entropy wave would be'created, but its effect is




(E‘B),
of gas
at the

stated

@

and (E-9) produces a relztlonshlp between the perturbation
velocity u and the perturbatlon of t.e speed of sound a
end of the combustion zone. This boundary condition 1s

as

z X E—r(m)ﬁ(tk,{—@ A a, t-2)]= 2 c'e

where

the inhomogeneous terms are defined as follows:

R.ll _=- O

Rz 5[/‘4-— (%:—Sz + (}%‘)z (l-rn)]a.z(l:)-o-

L) -Mlatt-2)+ [A0 (7 ) Tara e-2)

2
2;:7:- da, (l: ?)j
= e [(55)-Mlo by e i) -(BB )e, @2 )a ct)

2n -¥
() e, (t)a-‘(t-zz)-o-z[M—(’ﬁrfzJa (t) a, (t)

4rn ™

+ L7 (Z LJa. (t- 2’)4—[( M_]a -2 )a (t)
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u, (¢) 2 (¢t)
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If €-%0, thls boundary condltion agrees with Crocco's re-

sult for linear perturbations which states

=~ (-"n) a’ (t) + 7;:; &)+ %{—’,"— o’ (t-¢ )=o0

where primes denote infinitesimal perturbations. The appear-
ance of the retarded variable a(t- Ty ) under the perturbation
scheme is the reason for the name "time-lag theory."

The boundary condition represented by Equations (E-10)
is given in a time coordinate system. 'The wave problem is
solved 1n characteristic coordinates, however, so it is neces-
sary to rewrlte thc boundary condition in the new coordinate
system. Care must be taken in transforming the retarded variable
a(¢- 2, ) to characteristic coordinates. While the time-lag ?:
1s a constant in time coordinates, it 1s not a constant in char-
acteristic coordinates, Due to wave distortion, the time-lag
1s an oscilllating gquantity. Wave distortion is a nonlinear ef-
fect, however, so that the ocucillation of the time-lag is of
higher order in € and may be taken into account in an orderly
fashion.

As shown in Chapter III, space and time coordinates are
rewrltten as functions of the new independent variables, the
characteristic coordinates oC and /3 s and, furthermore, are

perturbed as a series in €. At the combustion zone, in

particular, °L=)8 and we have

% (BpI=% (fp)= B (pA)=0
tppl=t (ap+ret (ppr €L, (ga)+0(c”)

(E-11)




E-12

x%
Consider t*=t— 2; and let /ﬁ* correspond to €
such that

tYBIAN) =t (BB - T

”*
It is desired to relate /3 tc>/3 . The difference 1s the lag in

(2)

characteristic coordinates. Substituting the series from Egqua-

tion (E-11) into Equation (E-12), we have
C=[t. )t (ol pre e o1, a3 6%+
+ g (gp>8 (8787]+ 0 eV (513)

The zero order solution for t g (og/ﬂ) is obtained in Chapter III
and is written as follows

R

to(,é’,ﬁ)—-—/jfr

%
*o¥ 2

t (8% =
o / -4

A convenient definition 1s made

p = =2

° R o

These statements are combined with Equation (E-13) to yleld
2
- Ch
[-]

/*'-'/J-bo + € Iz E(/&/)-L“ (/d,*/d")]*'
r € 2t pp-t, (A7 0ED

Using a Taylor series expansion for t, (/zfld‘*) about the point
/




. _ E-13
ﬁ"é;/ﬁ-é , We see that
L (g% ") =t (B-b,8-4)+ ( ) [s*5 5]+

+°M/wf°
Similarly, we have l" ()d’) *) (/f é /5 é)-f' O(/d /54-5)

Note that the deriv QH ve 1s taken Mrmﬂ the line e( af.

Lanxell S LLIE il

Combining the two above relations with Equation (E-14) by suc-

cessive substitutlons, we find
t (8% 8" =t (5-4 /5-4),«67—44 /A,/J-A)Eﬁ(,ﬂ/c?)-
—t,(,d o,/yé)}-o(e‘)
L, 8P )=t 54.5-4)+ 0 CE)
Now, Equation (E-14) becomes

A¥=g-4 + € ST (5,0) tgq,dg)_]re‘—’;i[t (80)-4 (84,540
("‘) 9t (54, A4t ARt (54, 8-4)]+ 0 (€7)

(E-15)

Consider an arbitrary retarded variable E;A,d) ‘s a.gd,,d *) ).
Using a Taylor series expansion about the point /A—bo, Is -bg

+
along with Equation (E-15) for the difference between /J and /ﬂ-bo,

we have

E (8= ;gaéld-é)u; z ,/,4 (,aé/&)[}go’,a)-
«t(,u;w_pe L_(,, 4,44)[E (//g)tgu,u)]

,, € 2E (g404) (5 b, -4 ) [ (8,00t (54, ,u)j

5‘ i“'('“ A ‘)( )[_2‘(/,4) -t (8-4 5-4)] “oced
L""""""'* (E-16)




E-14

Now, this relation may be used in a strailghtforward manner to

. ) * ¥
evaluate the a‘:(t-z;‘)- a, (/5 '/j ) in Equations (E-10). Note
that any changes of order €+ produced by the coordinate transfor-
mation will be neglected. In view of these considerations, there
st1ll pemains one term to be transformed. This 1s the last term

in the expression for Rg. It essentiaily involves the term

This may be rewrltten as

&r/i“/x*) A
MY (P
% dt_(874") 4

The following is readlly seen from Equations (2) and (10) in Chapter

III
g’ﬁ (4,0)= o%o_ (8,6)+ c;/%t (a8)+ 0 (€%
=Tar +€ % l,d.,a)+o(€’)

Furthermore, we see that (;f
/ /
j"g(ﬁfﬂ*) = L(p,, ")[ 578" toce 2)]

— -uoE C. ;'J-é-'-//d /r)*OCEl)]

Now, treating the 1ntegral, 1t 1s found that

/ L
f* 7 - - :%f[ija"ﬁjﬂé-#]wl/;_{é

y

+0C€?)
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Note that -led-aglx,/ﬁé)/é/d +0 -6 ¥
/. 4 e o)

The same result would be obtained by expansion in a Taylor series
with the lower integral 1imit as the expansion puarameter. Com-~

bining this with Equation (E-15), the integral is evaluated as

t et (Padp-cairy s £04,88)T
* a,j/i; 9 7:?-“ 3V € alrbpPt ot ydpi)]

J-J
Considering M we may use Equation
;//; (5’ ,5*) g¢aro*)
(E-16) to obtain tHe proper transformation for thls derivative.
Now, the term with the time derivative and the time integral may
be readily evaluated in a perturbation series form.
The coordinate transformation can now be applied to
Equation (E-10). Tre chort-hand rotations g, = a; (4,4) and

Q‘,‘E(/_o B-4) are used in this final expression.

]

] [4
Q[ (1-¥n)a, + 2 4 RIn a. -2 eln
= da, -2+ S 0, ] Z €'R
where the inhomogeneous ter'ms are

-r . Ay
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The last term .of Ré and the last few terms of ! result
from expressing the retarded variable at'/f-bo rather than at
/f*. It 1s seen that derilvatives and integrals appear in this
boundary condition but they always appear as nonlinear terms.
So they may be calculated from lower order analysis and really
are just considered as known terms in the inhomogeneous part of
the higher order boundary condition, This will become clearer
after the boundary condition 1s separated according to powers
of € . Then it will be seen that this condition is actually
Just a series of algebraic relatiorns. (The ceparation procedure
is belng delayed until after the eigenvalue perturbation 1is
performed in Chapter III.) These algebraic relations, however,

will contaln retarded variables,

In conclusion, Equation (E-17) is the nonlinear expression

O
o]
ot

he condition at the end of the combustion zone. In particular,
it is the boundary condition at one chamber end for the zas-
dynamlic analysis of the combustion i
based primarily on the arguments which lead to the establishment
of Eqyuations (E-1) and (E-4); 1.e., 1t 1s an extension of the

Crocco time-lag theory which includes nonlinear terms.




